Lifestyle, reproductive factors and risk of gallbladder cancer
Shukla V K, Chauhan V S, Mishra R N, Basu S

INTRODUCTION
Carcinoma of the gallbladder is highly malignant with a poor survival rate.
There is a striking difference in incidence with regard to age, gender, race, genetic influence and geographical distribution. Cholelithiasis is associated in 68%–98% of patients with carcinoma of the gallbladder, and a high incidence among females suggest a role of female hormones in the aetiology of the disease.
Younger age at menarche, early age at first pregnancy, multiple pregnancies and prolonged fertility may increase the risk of biliary tract cancer because of elevated levels of oestrogen and progesterone.
A positive association between the number of live-births and carcinoma of the gallbladder has been found. A significant association of early menarche and prolonged reproductive period has also been reported. Chao and Greager demonstrated the postmenopausal state as a risk factor was associated with development of carcinoma of the gallbladder. LaVecchia et al reported a higher risk of carcinoma of the gallbladder in pregnant women.

INTRODUCTION
Carcinoma of the gallbladder is highly malignant with a poor survival rate. There is a striking difference in incidence with regard to age, gender, race, genetic influence and geographical distribution. Cholelithiasis is associated in 68%–98% of patients with carcinoma of the gallbladder, and a high incidence among females suggest a role of female hormones in the aetiology of the disease.
Younger age at menarche, early age at first pregnancy, multiple pregnancies and prolonged fertility may increase the risk of biliary tract cancer because of elevated levels of oestrogen and progesterone.
A positive association between the number of live-births and carcinoma of the gallbladder has been found. A significant association of early menarche and prolonged reproductive period has also been reported. Chao and Greager demonstrated the postmenopausal state as a risk factor was associated with development of carcinoma of the gallbladder. LaVecchia et al reported a higher risk of carcinoma of the gallbladder in pregnant women.

Oral contraceptive use is however not associated with a higher incidence. A chronic typhoid carrier state may be a predisposing factor for carcinoma of the gallbladder. Higher incidence of this carcinoma is reported in relation to lifestyle factors like smoking, tobacco chewing and alcohol consumption. A few studies have also emphasised the role of dietary factors in the aetiology of carcinoma of the gallbladder and biliary tract. The present study was carried out with an aim to evaluate the roles of lifestyle, menstrual and reproductive factors in carcinoma of the gallbladder in the northern part of India.

METHODS
A prospective case-control study was carried out at University Hospital, Banaras Hindu University, India, over a period of five years (1999–2003). 78 patients with gallbladder cancer (proven either on preoperative/peroperative biopsy or computed tomography [CT]- or ultrasound-guided fine needle aspiration cytology), were compared with 78 age- and gender-matched cholelithiasis cases without cancer which served as controls. The study was approved by the hospital ethics committee. Informed consent was obtained from the patients before inclusion in the study. Cases and controls were taken up consecutively and worked-up as per a predefined proforma designed to
include various personal habits like tobacco chewing, smoking and alcohol consumption. Female patients were assessed for menstrual and reproductive factors, and details of parity. Minor details about the types of smoking and chewing were collected. Odds-ratio (OR) and 95% confidence interval (CI) were calculated, and tests of significance applied.

RESULTS

The mean age of the patients with carcinoma of the gallbladder was 50 ± 1.39 years, and that for cholelithiasis without malignancy was 42.6 ± 1.03 years. Female patients comprised 68% of both the cancer group and gallstone group. A preponderance of the Hindu religion was found in both groups. Over half of the patients belonged to the low income bracket (below Rs 3,000 per month; USD 65), and about two-thirds had an education below or up to the primary school level (Table I). A statistical difference was observed for the average number of tobacco chewing and number of cigarettes per day (Table II). The habit of chewing tobacco in any form was present in 41.03% of patients with carcinoma of the gallbladder and in 21.79% of gallstone patients. The increase in risk was statistically significant in cancer patients who chewed tobacco (OR 2.50; 95%CI 1.24–5.05). An increased OR was seen with chewing tobacco (OR 2.71; 95%CI 1.22–6.02).

Statistically, there was an increased risk of carcinoma in patients who were smokers (Table III). The history of alcohol consumption was seen in 11 (11.6%) and 5 (4.7%) of cancer and gallstone patients, respectively. Four patients consumed country-made liquor. The cancer patients had started consuming alcohol at an early age and had consumed for a longer duration than the gallstone patients. Lower age at menarche (< 13 years), higher number of childbirths (> 4), higher number of pregnancies (> 4) and higher age at last childbirth (> 25 years) were factors responsible for a relatively increased risk of carcinoma of the gallbladder (Table IV). A higher risk was also observed in the postmenopausal women, and this was statistically significant.

DISCUSSION

Since the original description of carcinoma of the gallbladder by Maxmillan de Stol in 1777, studies have established a characteristic pattern of late diagnosis and ineffective treatment of this disease. Its hallmark lies in the tenacity with which it keeps the initiation and progression a secret for quite some time. When detected, in most cases the disease has progressed beyond cure. This, coupled with its aggressiveness, makes it a potential killer. Carcinoma of the gallbladder ranks fifth in the incidence of gastrointestinal malignancy and represents three-quarters
of extrahepatic biliary tract carcinoma.\(^{(19)}\) Although its exact aetiology is unknown, several risk factors have been proposed. Variant analysis has shown that gallstones form an important independent risk factor.\(^{(20)}\) Gallstones were detected in 75% of surgical cases and 90% of autopsy cases with carcinoma of the gallbladder. Maran et al observed a 2–3 times higher frequency of gallbladder and biliary tract cancer in patients with cholelithiasis.\(^{(21)}\) About 40%–100% cases of carcinoma of the gallbladder have been found to be associated with gallstones.\(^{(14,22)}\) Metaplastic change of the gallbladder epithelium is present in chronic cholecystitis, as was found by Sheth et al, and was proposed to be a precursor of carcinoma.\(^{(1)}\)

Previously-published data on the relationship of alcohol consumption and chewing tobacco with gallbladder carcinoma is inconclusive. Some studies suggested an increased risk, while others suggested that long-term alcohol use may actually play a protective role, perhaps by reducing the cholesterol saturation of bile.\(^{(23,24)}\) The risk of carcinoma of the gallbladder was increased in patients having a history of smoking in the present study, and it was particularly more in the patients who started smoking lately. Statistical analysis for patients with a history of alcohol consumption was not carried out due to their small numbers. This was because the majority of the carcinoma patients were females belonging to the lower/middle income class which in the Indian social setting rarely consume alcohol. Most of the rural women consume bidis (tobacco wrapped in tendu leaves). The smoking-related risk of gallbladder disease is highest soon

Table III. Chewing, smoking habits and risk of gallbladder cancer.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cancer cases (n = 78)</th>
<th>Gallstone cases (n = 78)</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chewing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betel leaf</td>
<td>18 (23.08)</td>
<td>15 (19.23)</td>
<td>1.26</td>
<td>0.58–2.72</td>
</tr>
<tr>
<td>Adding areca nut in chew</td>
<td>19 (24.36)</td>
<td>13 (16.67)</td>
<td>1.61</td>
<td>0.73–3.54</td>
</tr>
<tr>
<td>Tobacco</td>
<td>24 (30.77)</td>
<td>11 (14.10)</td>
<td>2.71</td>
<td>1.22–6.02</td>
</tr>
<tr>
<td>Adding lime in chew</td>
<td>22 (28.21)</td>
<td>15 (19.23)</td>
<td>1.65</td>
<td>0.78–3.49</td>
</tr>
<tr>
<td>Other condiments</td>
<td>7 (8.97)</td>
<td>5 (6.41)</td>
<td>1.44</td>
<td>0.44–4.75</td>
</tr>
<tr>
<td>Pan masala</td>
<td>6 (7.69)</td>
<td>5 (6.41)</td>
<td>1.22</td>
<td>0.36–4.17</td>
</tr>
<tr>
<td>Any form of chewing tobacco</td>
<td>32 (41.03)</td>
<td>17 (21.79)</td>
<td>2.50</td>
<td>1.24–5.04</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cigarette</td>
<td>6 (7.69)</td>
<td>3 (3.85)</td>
<td>2.08</td>
<td>0.50–8.65</td>
</tr>
<tr>
<td>Bidi</td>
<td>10 (12.82)</td>
<td>3 (3.85)</td>
<td>3.68</td>
<td>0.97–13.92</td>
</tr>
<tr>
<td>Cigar/churrute</td>
<td>4 (5.13)</td>
<td>3 (3.85)</td>
<td>1.35</td>
<td>0.29–6.25</td>
</tr>
<tr>
<td>Any form of smoking</td>
<td>17 (21.79)</td>
<td>8 (10.26)</td>
<td>2.44</td>
<td>0.96–6.05</td>
</tr>
</tbody>
</table>

Table IV. Reproductive and menstrual factors in female patients with gallbladder cancer and gallstones.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Cancer (n = 53)</th>
<th>Gallstones (n = 53)</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at menarche (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>12.4 ± 1.3</td>
<td>14.2 ± 1.2</td>
<td>2.63</td>
<td>1.45–6.03*</td>
</tr>
<tr>
<td>Median</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at marriage (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>17.1 ± 2.9</td>
<td>18.1 ± 3.2</td>
<td>1.32</td>
<td>0.52–2.93</td>
</tr>
<tr>
<td>Median</td>
<td>17</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of childbirths</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD no. of abortions</td>
<td>6.1 ± 2.3</td>
<td>4.3 ± 2.4</td>
<td>3.69</td>
<td>1.6–9.6*</td>
</tr>
<tr>
<td>Median</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At first childbirth</td>
<td>21.2 ± 2.9</td>
<td>22.3 ± 3.6</td>
<td>0.69</td>
<td>0.39–1.9</td>
</tr>
<tr>
<td>At last childbirth</td>
<td>33.5 ± 6.9</td>
<td>28.4 ± 6.8</td>
<td>2.89</td>
<td>1.21–7.69*</td>
</tr>
<tr>
<td>Menstrual status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premenstrual</td>
<td>20 (31.25)</td>
<td>70 (59.8)</td>
<td>0.30</td>
<td>0.13–0.66*</td>
</tr>
<tr>
<td>Postmenstrual</td>
<td>54 (84.3)</td>
<td>52 (44.44)</td>
<td>6.75</td>
<td>3.1–14.52*</td>
</tr>
</tbody>
</table>

* statistically significant

study of gallbladder cancer: Review of 36 years experience at MD

5. Silk YN, Douglass HO Jr, Nava HR, et al. Carcinoma of the
210:751-7.

6. Sheih CJ, Dunn E, Standard JE. Primary carcinoma of the
gallbladder; a review of the 16 year experience at the Waterbury

history and cancer of the biliary tract in women. Int J
Cancer 1994; 57:146-53.

8. Lambe I, Trichopopoulous D, Hsieh CC, Ekbom A, Adami HO,
Pavia M. Parity and cancers of the gallbladder and the extra

Singh TB, Shukla VK. Epidemiological study in gallbladder with
gall stones. Indian J Gastroenterol 1997; 16 (Suppl 2) 118-74.

10. Chao TC, Greager JA. Primary carcinoma of the gallbladder.

factors for gallstones disease requiring surgery. Int J Epidemiol

12. Yen S, Hsieh CC, MacMahon B. Extrahepatic bile duct cancer and
smoking, beverage consumption, past medical history and oral

aspects of gallbladder cancer: a case-control study of the SEARCH
program of the International Agency for Research on Cancer. J

14. Shukla VK, Khandelwal C, Roy SK, Vaidya MP. Primary

carcinoma of the gallbladder. A review of 16-year period at

15. Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers
among patients with gallstones are increased for carcinoma of the

16. Tseng M, Everhart JE, Sandler RS. Dietary intake and gallbladder

17. Moerman CJ, Bueno de Mesquita HB, Smoots FWM, Runia S. Life
style factors including diet and cancer of the gallbladder and bile
duct: a population based case-control study in the Netherlands.

gallbladder cancer: a Polish case-control study. Int J Cancer

19. Vaittinen E. Carcinoma of the gallbladder: A study of 390 cases

20. Hart J, Madan B. Factors affecting survival of patients with

21. Maran ES, Ludwig J, Kurland LT, Brian DD. Carcinoma of the
gallbladder and extrabiliary ductal in Rochester, Minnesota

22. Piehler JM, Crichlow RW. Primary carcinoma of the gallbladder.

23. Kato I, Nomura AM, Stemmerman GN, et al. Prospective study of
the association of alcohol with cancer of the upper aerodigestive

and risk of cancer of the liver, biliary tract and pancreas. Br J

25. McMichael AJ, Baghurst PA, Scragg RK. A case control study of
smoking and gallbladder disease: importance of examining time

26. Nakagaki M, Nakayama F. Effect of female sex hormones on

27. Singletary BK, Van-Thiel DH, Eagon PK. Estrogen and progesterone