Beneficial effects of *Annona squamosa* extract in streptozotocin-induced diabetic rats

ABSTRACT

Introduction: The present study investigated the possible therapeutic effects of *Annona squamosa* (A. squamosa) extract on certain biochemical markers in streptozotocin (STZ)-induced diabetes mellitus in rats.

Methods: The effects of an aqueous extract of *A. squamosa* leaves on blood glucose, insulin, C-peptide, albumin, albumin/globulin ratio, urea, uric acid and creatinine and the activities of diagnostic marker enzymes aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and gamma-glutamyl transpeptidase were examined in the plasma, liver and kidney tissues of control and experimental groups.

Results: Oral administration of *A. squamosa* (300 mg/kg) aqueous extract to diabetic rats for 30 days significantly reduced blood glucose, urea, uric acid and creatinine, but increased the activities of insulin, C-peptide, albumin, albumin/globulin ratio and restored all marker enzymes to near control levels.

Conclusion: The present results show that *A. squamosa* extract has an antihyperglycaemic effect and consequently may alleviate liver and renal damage associated with STZ-induced diabetes mellitus in rats.

Keywords: *Annona squamosa*, blood glucose, diabetes mellitus, insulin

INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder of multiple aetiologies characterised by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action or both. Globally, the estimated incidence of DM and projection for year 2010, as given by International Diabetes Federation is 239 million. DM is grossly reflected by profound changes in protein metabolism and by a negative nitrogen balance and loss of nitrogen from most organs. Increased urea nitrogen production in DM may be accounted for by enhanced catabolism of both liver and plasma proteins. Management of DM without any side effects is still a challenge to the medical system. There is an increasing demand by patients to use natural products with antidiabetic activity, because insulin and oral hypoglycaemic drugs have undesirable side effects. Medicinal plants are a good source of natural antioxidants believed to exert their effect by reducing the formation of the final active metabolite of the drug-induced systems or by scavenging the reactive molecular species to prevent their reaching a target site. It has been documented that several medicinal plants have hypoglycaemic effects associated with a significant alteration in the activity of liver hexokinase, glucokinase. In addition, Bopanna et al demonstrated that the administration of several herb extracts could restore the changes in the activities of serum enzymes, like alkaline phosphatase, alanine aminotransferase (ALT), acid phosphatase and transaminases, aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Phytochemicals isolated from plant sources have been used for the prevention and treatment of cancer, heart disease, DM, and high blood pressure.

Annona squamosa (A. squamosa) L. (Family: Annonaceae), commonly known as custard apple, is cultivated throughout India, mainly for its edible fruit. The plant is traditionally used for the treatment of epilepsy, dysentery, cardiac problems, worm infestation, constipation, haemorrhage, antibacterial infection, dysuria, fever, and ulcer. It is also used for antifertility, antitumour and abortifacient properties. Ethanol extracts of leaves and stem are reported to have an antineoplastic activity. The aqueous leaf extract has also been reported to ameliorate hyperthyroidism, which is often considered as a causative factor of DM. The tribes and villagers of the Aligarh district and Chotonagar district in India extensively use the young leaves of *A. squamosa* along with the seeds of *Piper nigrum* for the management of DM. In our previous study, we have demonstrated the antidiabetic effect of *A. squamosa* in streptozotocin-induced diabetic rats.
Table 1. Effect of treatment with A. squamosa leaf extract for 30 days on plasma parameters of control and experimental groups of rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Diabetic</th>
<th>Diabetic + Insulin</th>
<th>Diabetic + A. squamosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mg/dL)</td>
<td>91.0 ± 6.3</td>
<td>287 ± 7.2*</td>
<td>93.4 ± 5.5*</td>
<td>97.5 ± 4.5*</td>
</tr>
<tr>
<td>Plasma insulin (µU/ml)</td>
<td>16.0 ± 0.80</td>
<td>6.25 ± 0.55*</td>
<td>12.5 ± 0.75*</td>
<td>11.9 ± 0.70*</td>
</tr>
<tr>
<td>C-peptide (pmol/L)</td>
<td>260.2 ± 12.5</td>
<td>155.4 ± 10.1*</td>
<td>227.7 ± 9.8*</td>
<td>242.1 ± 10.7*</td>
</tr>
<tr>
<td>Protein (g/dL)</td>
<td>7.56 ± 0.95</td>
<td>4.40 ± 0.80*</td>
<td>7.20 ± 0.68*</td>
<td>6.98 ± 0.55*</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>3.90 ± 0.45</td>
<td>1.92 ± 0.28*</td>
<td>3.62 ± 0.16*</td>
<td>3.41 ± 0.24*</td>
</tr>
<tr>
<td>A/G ratio</td>
<td>1.06 ± 0.18</td>
<td>0.77 ± 0.15*</td>
<td>1.01 ± 0.21*</td>
<td>0.94 ± 0.25*</td>
</tr>
<tr>
<td>Urea (mg/dL)</td>
<td>24.6 ± 1.8</td>
<td>38.0 ± 2.7*</td>
<td>22.5 ± 1.6*</td>
<td>25.8 ± 1.4*</td>
</tr>
<tr>
<td>Uric acid (mg/dL)</td>
<td>1.10 ± 0.2</td>
<td>2.0 ± 0.1*</td>
<td>1.18 ± 0.08*</td>
<td>1.42 ± 0.06*</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.95 ± 0.08</td>
<td>2.15 ± 0.25*</td>
<td>1.20 ± 0.09*</td>
<td>1.39 ± 0.05*</td>
</tr>
</tbody>
</table>

Values are given as mean ± SD for groups of eight animals each. Values are statistically significant at *p < 0.05.

Diabetic rats were compared with control rats; A. squamosa-treated diabetic rats were compared with diabetic rats; insulin-treated diabetic rats were compared with diabetic rats.

Therefore, the present study aimed to examine the influence of oral administration of A. squamosa extract on the levels of some biochemical parameters and the activities of some enzymes in plasma, liver and kidney of STZ-induced DM in rats.

METHODS

STZ was purchased from Sigma Chemical Company (St Louis, MO, USA). All the other chemicals were of analytical grade and were purchased from commercial sources. The young leaves of the plant A. squamosa were collected from The Survey of Medicinal Plant Unit, Regional Research Institute of Unani Medicine, Aligarh, India. Identification of the samples was done by using standard botanical monographs. They were further confirmed with the Department of Botany, Aligarh Muslim University, Aligarh, India, and a voucher specimen (HB 546) was deposited in the department herbarium. The aqueous extract was prepared by cold maceration of 250 g of the shade dried leaf powder in 500 ml of distilled water and allowed to stand overnight and boiled for 5–10 min till the volume was reduced by half. The solution was then cooled, filtered, concentrated, dried in vacuo (yield 36 g) and the residue stored in a refrigerator at 2–8°C for subsequent experiments.

Male albino Wistar rats, weighing about 150–180 g obtained from Central Animal House, JN Medical College, Aligarh Muslim University, Aligarh, India, were used for the present investigations. The animals were maintained on standard rat feed supplied by Hindustan Lever Ltd, India. The experiments were conducted according to the ethical norms approved by Ministry of Social Justice and Empowerment, Government of India and Institutional Animal Ethics Committee Guidelines (IAEC). The animals were fasted overnight and DM was induced by a single intraperitoneal (i.p.) injection of freshly prepared STZ (55 mg/kg body weight of rats) in 0.1 M citrate buffer (pH 4.5). The animals were allowed to drink 5% glucose solution overnight to overcome the drug-induced hypoglycaemia. Control rats were injected with citrate buffer alone. The animals were considered as diabetic, if their blood glucose values were above 250 mg/dL on the third day after STZ injection. The treatment was started on the fourth day after STZ injection and this was considered as the first day of treatment. The treatment was continued for 30 days.

The rats were divided into four groups comprising eight animals in each group as follows:

Group 1: Control rats given only buffer.

Group 2: Diabetic controls.

Group 3: Diabetic rats treated with protamine-zinc insulin i.p. injection (6 units/kg body weight of rats/day). (24)

Group 4: Diabetic rats treated orally with A. squamosa (300 mg/kg body weight /day) in aqueous solution for 30 days.

At the end of the experiment, blood was collected into heparinised tubes, and the plasma and serum were separated by centrifugation. The liver and kidney were quickly removed, washed in ice-cold, isotonic saline and blotted individually on ash-free filter paper, and the organ weights were measured. The tissues were then homogenised in 0.1 M Tris–HCl buffer, pH 7.4. The homogenate was used for the estimations of proteins, enzymes, and other parameters. Blood glucose, urea, uric acid and creatinine were estimated using a commercial diagnostic kit (Ranbaxy Laboratories, New Delhi, India). Plasma insulin (Boehringer Mannheim kit, Germany) and C-peptide (Packard, USA) were determined using a radioimmunoassay kit. The albumin and globulin contents were estimated by the method described by Reinhold. (25)

The enzymes, AST, ALT and ALP, were assayed by the method of King and Armstrong (26) and \(\gamma \)-glutamyl transpeptidase (\(\gamma \)-GT) was assayed by the method of
Rats restored significantly of plasma albumin and the levels of albumin/globulin ratio were decreased after administration of A. squamosa (300 mg/kg) and insulin to diabetic rats; insulin -treated diabetic rats were compared with diabetic rats; insulin-treated diabetic rats were compared with diabetic rats.

Table II. Effect of treatment with A. squamosa leaf extract for 30 days on AST, ALT, ALP and γ-GT activities in plasma, liver and kidney of control and experimental groups of rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Control</th>
<th>Diabetic</th>
<th>Diabetic + Insulin</th>
<th>Diabetic + A. squamosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>74.4 ± 6.93</td>
<td>112.1 ± 6.42<sup>a</sup></td>
<td>83.2 ± 2.70<sup>a</sup></td>
<td>84.5 ± 3.45<sup>a</sup></td>
</tr>
<tr>
<td>ALT</td>
<td>32.6 ± 2.2</td>
<td>64.2 ± 4.60<sup>a</sup></td>
<td>37.5 ± 3.15<sup>a</sup></td>
<td>41.0 ± 2.52<sup>a</sup></td>
</tr>
<tr>
<td>ALP</td>
<td>76.6 ± 4.72</td>
<td>138.1 ± 6.41<sup>a</sup></td>
<td>85.7 ± 5.32<sup>a</sup></td>
<td>90.5 ± 4.75<sup>a</sup></td>
</tr>
<tr>
<td>γ-GT</td>
<td>13.6 ± 1.20</td>
<td>25.5 ± 2.84<sup>a</sup></td>
<td>17.4 ± 1.62<sup>a</sup></td>
<td>17.8 ± 1.80<sup>a</sup></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>754.0 ± 16.0</td>
<td>960.4 ± 21.3<sup>a</sup></td>
<td>744.7 ± 14.7<sup>a</sup></td>
<td>760.0 ± 12.9<sup>a</sup></td>
</tr>
<tr>
<td>ALT</td>
<td>907.3 ± 16.2</td>
<td>1241.6 ± 19.4<sup>a</sup></td>
<td>935.5 ± 13.0<sup>a</sup></td>
<td>999.2 ± 19.7<sup>a</sup></td>
</tr>
<tr>
<td>ALP</td>
<td>0.16 ± 0.02</td>
<td>0.30 ± 0.04<sup>a</sup></td>
<td>0.22 ± 0.01<sup>a</sup></td>
<td>0.24 ± 0.02<sup>a</sup></td>
</tr>
<tr>
<td>γ-GT</td>
<td>3.44 ± 0.36</td>
<td>5.67 ± 0.54<sup>a</sup></td>
<td>3.65 ± 0.34<sup>a</sup></td>
<td>3.73 ± 0.24<sup>a</sup></td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>785.0 ± 12.8</td>
<td>745.5 ± 14.0<sup>a</sup></td>
<td>788.2 ± 10.8<sup>a</sup></td>
<td>775.7 ± 8.90<sup>a</sup></td>
</tr>
<tr>
<td>ALT</td>
<td>841.4 ± 18.8</td>
<td>808.2 ± 20.8<sup>a</sup></td>
<td>830.7 ± 15.3<sup>a</sup></td>
<td>821.6 ± 17.1<sup>a</sup></td>
</tr>
<tr>
<td>ALP</td>
<td>0.22 ± 0.03</td>
<td>0.43 ± 0.06<sup>a</sup></td>
<td>0.30 ± 0.03<sup>a</sup></td>
<td>0.33 ± 0.02<sup>a</sup></td>
</tr>
<tr>
<td>γ-GT</td>
<td>2.71 ± 0.30</td>
<td>5.66 ± 0.36<sup>a</sup></td>
<td>3.01 ± 0.24<sup>a</sup></td>
<td>3.25 ± 0.16<sup>a</sup></td>
</tr>
</tbody>
</table>

Values are given as mean ± SD for groups of eight animals each. Values are statistically significant at *p < 0.05.

Diabetic rats were compared with control rats; A. squamosa-treated diabetic rats were compared with diabetic rats; insulin-treated diabetic rats were compared with diabetic rats.

Units of measurement (per L) for AST and ALT: μmol of pyruvate liberated/hr; ALP: μmol of phenol liberated/min; γ-GT: mol of p-nitro aniline liberated/min.

Rosalki and Rau. The protein content in the plasma, liver and kidney were estimated by the method of Lowry et al. All spectrophotometric measurements were carried out in a Camspec UV-visible (Camspec M330B, UK) spectrophotometer. All the grouped data was statistically evaluated via the Statistical Package for Social Sciences version 7.5 (SPSS Inc, Chicago, IL, USA). Hypothesis testing methods included one way analysis of variance (ANOVA) followed by least significant differences test. p-values of less than 0.05 were considered to indicate statistical significance. All the results were expressed as mean ± SD for eight animals in each group.

RESULTS

A significant increase in the level of blood glucose, a decrease in plasma insulin and C-peptide were observed in diabetic rats when compared to control rats. Administration of A. squamosa (300 mg/kg) and insulin to diabetic rats significantly decreased the level of blood glucose, increased plasma insulin and C-peptide to near control level. Table I demonstrates the levels of protein, plasma albumin and albumin/globulin ratio in control and STZ-diabetic rats. The level of protein in plasma was found to be reduced in diabetic animals (p < 0.05) when compared to control animals. The lowered level of protein, after A. squamosa treatment, increased to near control. The levels of albumin and albumin/globulin ratio in plasma were decreased in diabetic animals. These lowered levels of plasma albumin and albumin/globulin ratio level were restored significantly in A. squamosa-treated diabetic rats.

Urea, uric acid, and creatinine levels were significantly elevated in STZ-DM in rats (p < 0.05) when compared to control animals. Oral administration of A. squamosa extract for 30 days significantly lowered urea, uric acid and creatinine levels in STZ-diabetic rats. Table II shows the activities of AST, ALT, ALP and γ-GT in plasma, liver and kidney of control and STZ-diabetic rats. The activities of these enzymes were found to be significantly increased (p < 0.05) in the plasma and liver of diabetic rats. In the kidney of diabetic animals, the activities of ALP and γ-GT were increased, while the activities of AST and ALT were not altered. Oral administration of A. squamosa for 30 days resulted in the near normalisation of the activities of AST, ALT, ALP and γ-GT in the plasma, liver and kidney of diabetic rats.

DISCUSSION

Type I DM is a chronic disease characterised by high blood glucose levels due to an absolute or relative deficiency of circulating insulin levels. Although various types of oral hypoglycaemic agent are currently available along with insulin for treating DM, there is a growing interest in herbal remedies due to the side-effects associated with the existing therapeutic hypoglycaemic agents. The present investigation indicates the hypoglycaemic and protective effects of A. squamosa leaves in the liver and kidney of STZ-diabetic rats. We have observed a significant decrease in blood glucose in A. squamosa-treated diabetic rats, when compared with diabetic control rats. The optimum dosage (300 mg/kg) was standardised and confirmed by a previous study with significant hypoglycaemic and antihyperlipidemic activity. The possible mechanism of A. squamosa
hypoglycaemic action may be through potentiation of pancreatic secretion of insulin from β-cell of islets or due to enhanced transport of blood glucose to the peripheral tissue. This was clearly evidenced by the increased level of insulin in diabetic rats treated with A. squamosa. In this context, a number of other plants have also been reported to have hypoglycaemic and insulin release stimulatory effects.39,40,41

C-peptide and insulin are the products of the enzymatic cleavage of proinsulin and secreted into the circulation in equimolar concentrations. The measurement of both C-peptide and insulin levels have been reported to be a valuable index of insulin secretion rather than insulin alone.35 In this study, the plasma C-peptide and insulin levels were significantly higher in the A. squamosa than in the DM group. Although the reduction of plasma glucose in these two groups was small, it was significant. Reduction in plasma total protein and albumin level was observed in diabetic rats and this is consistent with the results obtained by Bakrie34 and Tuvemo et al.35 The decrease in protein and albumin may be due to microproteinuria and albuminuria, which are important clinical markers of diabetic nephropathy,42 and/or may be due to increased protein catabolism.43 The results of the present study demonstrated that the treatment of diabetic rats with the aqueous extract of A. squamosa caused a noticeable elevation in the plasma total protein and albumin levels as compared with their normal levels. Such improvement of serum protein and albumin was previously observed after the oral administration of Balanites aegyptiaca (B. aegyptiaca) to experimentally diabetic rats.38 It has been established that insulin stimulates the incorporation of amino acids into proteins.47

The plasma levels of urea, uric acid and creatinine levels were measured, as DM also causes renal damage due to abnormal glucose regulation, including elevated glucose and glycosylated protein tissue levels, haemodynamic changes within the kidney tissue, and increased oxidative stress.39 The STZ-induced diabetic rats exhibited significantly higher plasma urea, uric acid and creatinine levels compared to the DM group. However, the A. squamosa supplement lowered these plasma values to a control range. A significant elevation in serum creatinine and urea levels indicate an impaired renal function of diabetic animals.40 Thus, it would appear that the A. squamosa leaves supplement lowered the plasma urea, uric acid and creatinine levels by enhancing the renal function that is generally impaired in diabetic rats. These results are in agreement with other previous studies on the mesocarp extract of B. aegyptiaca,39,41 and herbal formulation D-400.42

The increase in the activities of plasma AST, ALT and ALP indicated that DM may induce hepatic dysfunction. The enzymes directly associated with the conversion of amino acids to keto acids are AST and ALT, and are increased in the diabetic condition. Begum and Shanmugasundaram also reported an increase in the activities of AST and ALT in the liver of diabetic animals.45 Treatment with A. squamosa or insulin normalised these enzyme activities. Similarly, increased activities of AST and ALT in the diabetic liver were also reported by Jorda et al.46 The increased protein catabolism accompanying gluconeogenesis and urea formation that are seen in the diabetic state might be responsible for the elevation of these tissue transaminases. The rise in the activity of ALT is due to hepatocellular damage and is usually accompanied by a rise in AST.45 This might be the reason for the elevated activities of these enzymes, which were brought back to near normal value by A. squamosa treatment. This result shows the normalising effects of A. squamosa on hepatocellular damage and suppression of gluconeogenesis.

Elevated activity of ALP was observed in STZ-diabetic rats. Prince et al have also reported increased ALP activity in experimentally diabetic rats.42 The increased activity of this enzyme in plasma may be a result of diabetes-induced damage to the tissues. A. squamosa treatment restored the activity of this enzyme to near normal by reducing its induction in DM. A. squamosa treatment lowered the activity of ALT by 80% in the diabetic condition.44 In addition, hepato cellular damage or cholestasis may also contribute to the elevation in the activity. Increased activity of ALT in STZ-induced diabetic rats was lowered to near normal by A. squamosa treatment that indicates the possible prevention of necrosis by A. squamosa treatment.

In conclusion, A. squamosa leaves extract lowered blood glucose with a simultaneous increase in the plasma insulin and C-peptide levels. In addition, A. squamosa extract could influence protein metabolism and marker enzymes in STZ-induced diabetic rats. Phytochemical studies showed that the A. squamosa contained a high amount of flavonoids like rutin and hyperoside.13,14 Longer duration studies of A. squamosa and its isolated compounds on chronic models are necessary to develop a potent antidiabetic drug.
REFERENCES

