Lipid peroxidation and antioxidant status in patients with breast cancer

Rajneesh C P, Manimaran A, Sasikala K R, Adaikappan P

ABSTRACT

<u>Introduction</u>: The present study was undertaken to evaluate the status of lipid peroxidation and antioxidants as biomarkers in human plasma.

<u>Methods</u>: The extent of lipid peroxidation as evidenced by the formation of thiobarbituric acid reactive substances (TBARS) and conjugated dienes (CD) as well as the status of the antioxidants superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx) and glutathione Stransferase (GST) in serum samples of 40 breast cancer patients in and around Coimbatore, India, were studied. Controls consisted of members of the public with no previous history of breast cancer or other cancer-related diseases.

<u>Results</u>: The plasma samples of the breast cancer patients showed enhanced level of lipid peroxidation when compared to the corresponding controls. This was accompanied by a significant elevation in both enzymic and non-enzymic antioxidants.

<u>Conclusion</u>: These findings indicate the significant increase in lipid peroxidation as evidenced by the level of TBARS and antioxidant status such as elevated SOD, CAT, GPx, GSH and GST in samples from breast cancer patients compared to controls.

Keywords: antioxidants, breast cancer, glutathione peroxidase, lipid peroxidation

Singapore Med J 2008;49(8):640-643

INTRODUCTION

Breast carcinoma is one of the most common neoplasms in women and is a leading cause of cancer-related deaths worldwide. The aetiology of breast cancer is multifactorial. Significant breast cancer risk factors include age, early age at menarche, late age of menopause, late age at first pregnancy, obesity, oral contraception, hormone replacement therapy, diet, family history, lactation and prior history of benign breast disease.⁽¹⁾ In the United States, breast cancer is one of the most common malignant tumours in women. The American Cancer Society estimated that approximately 210,000 new patients would be diagnosed with breast cancer and 40,000 women would die from this disease in 2004. $^{\scriptscriptstyle (2)}$

The common risk factor in the development of breast cancer is the increased lifetime exposure to endogenous or exogenous oestrogens. A number of genes, including BRCA1 and BRCA2, HER-2/neu and p53, have been linked to breast cancer susceptibility and development.⁽³⁾ Oxygen-free radicals (OFR) generated by a number of processes in vivo are highly reactive and toxic.⁽⁴⁾ However, biological systems have evolved an array of enzymic and non-enzymic antioxidant defence mechanisms to combat the deleterious effects of OFR. Superoxide dismutase (SOD) and catalase (CAT) play a key role in the detoxification of superoxide anion and hydrogen peroxide (H2O2), respectively, thereby protecting against OFR-induced damage. Reduced glutathione (GSH) in conjunction with glutathione peroxidase (GPx) and glutathione S-transferase (GST) plays a central role in the defence against free radicals, peroxides and a wide range of xenobiotics and carcinogens.^(5,6)

Oxidative stress arises when there is an imbalance between OFR formation and scavenging by antioxidants. Excess generation of OFR can cause oxidative damage to biomolecules resulting in lipid peroxidation, mutagenesis and carcinogenesis. OFR-induced lipid peroxidation has been implicated in neoplastic transformation.⁽⁷⁾ Although a number of studies have unravelled the role of oestrogens as well as the imbalance in oncogenes and tumour suppressor genes in breast cancer, the involvement of oxidative stress in breast carcinogenesis has not been extensively documented. We therefore examined the extent of lipid peroxidation, as evidenced by the formation of thiobarbituric acid reactive substances (TBARS) and conjugated dienes (CD), and the status of the antioxidants SOD, CAT, GSH, GPx and GST in the plasma of patients with carcinoma of the breast.

METHODS

40 newly-diagnosed breast cancer patients from Coimbatore, India, with a mean age of 46.71 ± 3.85 years, and who had not undergone any previous treatment for their tumours, were chosen for the study. The patients were clinically categorised as stage II (19 patients) and stage III (21 patients) infiltrative ductal carcinoma of the breast. The patients were not using hormones, oral contraceptives and

Department of Zoology, Human Genetics Research Facility, Bharathiar University, Coimbatore 641046, Tamil Nadu, India

Rajneesh CP, MSc, PhD Research Scholar

Sasikala KR, MSc, PhD Professor

Department of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India

Manimaran A, MSc, MPhil, PhD Research Scholar

Department of Biology, Molecular Neurotoxicology Laboratory/ Proteomics Core, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA

Adaikappan P, MSc, PhD Research Scholar

Correspondence to: Dr Anbazhagan Manimaran Tel: (91) 4144 238 343 Fax: (91) 4144 239 141 Email: mani267@ gmail.com

General characteristics	Breast cancer patients
Total number of subjects Age range (years) Age at menarche (years)	40 25–60 12–15
Menopausal status Premenopausal Postmenopausal	28 12
Cancer site Left breast Right breast	29
Clinical status Infiltrative ductal carcinoma	40
Clinical stage Stage T2N M0 Stage T3N M0	19 21

Table I. General characteristics of breast cancer natients.

T: tumour size; T1: < 2 cm, T2: 2-4 cm, T3: > 4 cm.

N: nodal metastasis, N0: no regional lymph node metastasis, N1: metastasis in a single ipsilateral node of < 3 cm diameter, M: distant metastasis, M0: no distant metastasis.

were nonsmokers. None of them had concomitant diseases such as diabetes mellitus, liver disease and rheumatoid arthritis (Table I). Informed consent was obtained from all the participants. The Human Ethics Committee, India approved the study. Controls consisted of members of the public with no previous history of breast cancer and other cancer-releated diseases.

Blood was collected by venous arm puncture in patients and controls. The collected blood was injected into EDTA vaccutainets and the plasma was separated by centrifuging at 1,000 g for15 minutes. All the chemicals and reagents used in the study were of analytical grade and purchased in Hi-Media Laboratories (Mumbai, India) and Sigma (St Louis, MO, USA). Lipid hydroperoxides were estimated by the method of Jiang et al.⁽⁸⁾ The reaction mixture in a total volume of 2.0 ml containing 0.2 ml of plasma and 1.8 ml of Fox reagent, was incubated for 30 minutes. Hydroperoxides are detected by their ability to oxidise ferrous iron, leading to the formation of a chromophore with an absorbance maximum at 560 nm.

Lipid peroxidation was estimated by measurement of thiobarbituric acid reactive substances (TBARS) in plasma by the method of Yagi.⁽⁹⁾ The pink chromogen produced by the reaction of thiobarbituric acid with malondialdehyde, a secondary product of lipid peroxidation was estimated at 532 nm. CDs were estimated by the method of Rao and Recknagel.⁽¹⁰⁾ This method is based on the arrangement of the double bonds in polyunsaturated fatty acids to form CDs with an absorbance maximum at 233 nm.

GSH was determined by the method of Ellman.⁽¹¹⁾ GSH estimation was based on the development of a yellow colour when 5,5-dithio (2-nitrobenzoic acid) was added to compounds containing sulfhydryl groups. GPx activity was assayed by the method of Rotruck et al⁽¹²⁾ with

modification. A known amount of enzyme preparation was incubated with H2O2 in the presence of GSH for a specified time period. The amount of H2O2 utilised was determined by the method of Ellman.⁽¹¹⁾ The activity of GST was estimated by the method of Habig et al,⁽¹³⁾ by following the increase in absorbance at 340 nm using 1-chloro-2,4-dinitrobenze as substrate.

SOD was assayed by the method of Kakkar et al⁽¹⁴⁾ based on the 50% inhibition of the formation of nicotinamide adenine dinucleotide (NADH)-phenazine methosulfate-nitroblue tetrazolium formazan at 520 nm. Haemoglobin in the haemolysate was measured according to the method of Drabkin and Austin. (15) Blood was diluted in an alkaline medium containing potassium cyanide and potassium ferricyanide. Haemoglobin oxidised to methaemoglobin combines with cyanide to form cyanmethaemoglobin which was measured at 540 nm. The data for biochemical analyses are expressed as mean and standard deviation (SD). Statistical comparisons were performed by Student's t-test using the Statistical Package for Social Sciences version 10.0 (SPSS Inc, Chicago, IL, USA).

RESULTS

The extent of lipid peroxidation in the breast cancer samples as evidenced by the formation of TBARS, CDs and lipid hydroperoxides, is represented in Table II. The concentration of TBARS in the cancer samples was significantly higher (p < 0.05) when compared to the corresponding control samples. Values for CDs and lipid hydroperoxides showed a similar but significantly greater response (p < 0.001) in cancer samples compared to the corresponding control samples. Table III indicates the antioxidant profile in the cancer plasma samples. The concentration of GSH and the activities of SOD, CAT, GPx and GST in the cancer samples showed a marked elevation compared to the controls. The respective concentrations of SOD and CAT were significantly increased compared to the controls (p < 0.001). The activity of GPx was 1.65fold higher in breast tumours compared to the controls. GSH and GST exhibited nearly a 2-3-fold increase (p < 0.001) in the patient plasma samples compared to the corresponding controls.

DISCUSSION

Damage to the breast epithelium by OFR can lead to fibroblast proliferation, epithelial hyperplasia, cellular atypia and breast cancer. Studies have shown increased lipid peroxidation in solid tumours.^(16,17) Tamoxifen therapy in postmenopausal women with breast cancer reduced the increase in lipid peroxidation. Damage to the

Table II. Lipid peroxidation in breast cancer	r patients (mean ± SD, n = 40).
---	---------------------------------

Parameters	Controls	Breast cancer patients
TBARS (nmol/100 mg protein)	126.58 ± 11.62	33.24 ± 2.94*
CD (µmol/haemoglobin)	0.46 ± 0.04	0.6 ± 0.05**
LOOH (nmol/100 mg protein)	0.44 ± 0.08	0.59 ± 0.09**

*As compared with breast cancer controls, p < 0.05.

***As compared with breast cancer controls, p < 0.001.

Table III. Antioxidant status in	breast cancer	• patients	(mean ± SD, n = 40).
----------------------------------	---------------	------------	----------------------

Parameters	Controls	Breast cancer patients
SOD ^a	18.13 ± 1.40	21.24 ± 2.42*
CAT⁵	8.59 ± 0.94	10.21 ± 0.85*
GSH⁰	7.50 ± 0.30	17.45 ± 0.26*
GPx⁴	7.6 ± 0.9	29.19 ± 1.21*
GST	2.72 ± 0.63	5.83 ± 0.72*

^a Amount of enzymes required to give 50% inhibition of NBT reduction/mg protein.

^b µmol H2O2 utilised/s/mg protein.

° mg/di plasma

^d µmol GSH utilised/min/mg protein.

^e µmol CDNB–GSH conjugate formed/min/mg protein.

*As compared with breast cancer control. p < 0.001.

mammary epithelium by reactive oxygen species can lead to fibroblast proliferation epithelial hyperplasia, cellular atypia and breast cancer.^(18,19)

The increase in plasma lipid peroxidation in breast cancer seen in the present study was associated with enhanced antioxidant capacities. Increased generation of OFR, such as O₂ and H₂O₂, can induce SOD and CAT. An increase in total and mitochondrial SOD activities due to over expression has been reported.⁽²⁰⁾ Increased SOD mRNA expression was observed in cancer samples from patients with carcinoma of the breast.⁽²¹⁾ Higher activity of CAT has been documented in tumour cell lines compared to controls.⁽²²⁾ Our results lend credence to these reports. Glutathione, an important substrate for GPx and GST, has been documented to have regulatory effects on cell proliferation.⁽²³⁾ Over expression of GSH has been reported in both animal and human tumours by us as well as by other workers.^(17,24,25)

A significant increase in the activity of GPx, the first step of enzyme defence against H₂O₂ and other hydroperoxides, has been reported in tumours.^(26,27) The higher activity of GPx in breast cancer cell lines was suggested to result from an increased expression of genomic DNA.⁽²⁸⁾ GST, which is involved in the detoxification of electrophilic toxins and carcinogens, is increased in most of the human tumours studied. High concentrations of GST may rapidly detoxify anticancer agents, thereby preventing their cytotoxic action. Enhanced GST activity in breast cancer samples in our study supports ubiquitously-reported induction of GST, especially the isoenzyme GST-Pin various cancer tissues and cell lines.^(29,30) Overproduction of OFR coupled with antioxidant depletion is recognised to result in oxidative stress. $^{(5,6)}$

The increase in lipid peroxidation in breast cancer patients in the present study was counterbalanced by enhanced host antioxidant defence systems protecting against oxidative stress. Recent reports suggest that oxidative stress can cause upregulation of antioxidant enzymes that render cells more resistant to subsequent oxidative insult.⁽³¹⁾ Prolonged exercise generates oxidative stress, which results in increased endogenous antioxidants. Exercise-trained mice showed increased levels of hepatic SOD and CAT.^(32,3) Several researchers reported decreases in the antioxidant level and increases in the lipid peroxidation level.^(1,2)

Overexpression of antioxidants has been documented in a wide variety of malignant tumours, including breast cancer.^(17,27,29) Cancer cells with increased activities of antioxidant enzymes are presumed to escape recognition by cytotoxic lymphocytes.⁽³⁴⁾ From the results of the present study, we suggest that increased lipid peroxidation and host antioxidant defences associated with the development of breast cancer may offer a selective growth advantage to tumour cells over their surrounding normal counterparts.

REFERENCES

- Gonenc A, Erten D, Aslan S, et al. Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumor and benign breast disease. Cell Biol Int 2006; 30:376-80.
- Yeh CC, Hou MF, Tsai SM, et al. Superoxide anion radical, lipid peroxides and antioxidant status in the blood of patients with breast cancer. Clin Chim Acta 2005; 361:104-11.
- Carter RF. BRCA1, BRCA2 and breast cancer: a concise clinical review. Clin Invest Med 2001; 24:147-57.
- 4. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis 2000;

21:361-70.

- Datta K, Sinha S, Chattopadhyay P. Reactive oxygen species in health and disease. Natl Med J India 2000; 13:304-10.
- Matés JM, Pérez-Gómez C, Núñez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem 1999; 32:595-603.
- Hristozov D, Gadjeva V, Vlaykova T, Dimitrov G. Evaluation of oxidative stress in patients with cancer. Arch Physiol Biochem 2001; 109:331-6.
- Jiang ZY, Hunt JV, Wolf SP. Detection of lipid hydroperoxides using Fox method. Anal Biochem 1992; 202:384-9.
- Yagi K. Lipid peroxides and human disease. Chem Physiol Lipids 1978; 45:337-51.
- Rao KS, Recknagel RO. Early onset of lipid peroxidation in rat liver after carbon tetrachloride administration. Exp Mol Pathol 1968; 9:271-8.
- Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82:70-7.
- Rotruck JT, Pope AI, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973; 179:588-90.
- Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferase the first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249:7130-9.
- 14.Kakkar PS, Das BB, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 1984; 21:130-2.
- Drabkin DL, Austin JM. Spectrophotometric studies, spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 1932; 98:719-33.
- 16. Zieba M, Nowak D, Suwalski M, et al. Enhanced lipid peroxidationin cancer tissue homogenates in non-small cell lung cancer. Monaldi Arch Chest Dis 2001; 56:110-4.
- Skrzydlewska E, Stankiewicz A, Sulkowska M, Sulkowski S, Kasacka I. Antioxidant status and lipid peroxidation in colorectal cancer. J Toxicol Environ Health 2001; 64:213-22.
- Thangaraju M, Vijayalakshmi T, Sachdanandam P. Effect of tamoxifen on lipid peroxide and anti-oxidative system in postmenopausal women with breast cancer. Cancer 1994; 74:78-82.
- Portakal O, Ozkaya O, Erden Inal M, et al. Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin Biochem 2000; 33: 279-84.
- Liu R, Oberley LW. Transfection and expression of MnSOD cDNA decreases tumor malignancy of human oral squamous carcinoma SCC-25 cells. Hum Gene Ther 1997; 8:585-95.
- 21. Li JJ, Colburn NH, Oberley LW. Maspin gene expression in tumor

suppressor induced by overexpressing manganese containing SOD cDNA in human breast cancer. Carcinogenesis 1998; 19:833-9.

- 22. Ripple MO, Henry WF. Prooxidant antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst 1997; 89:40-8.
- Obrador E, Navarro J, Mompo J, et al. Glutathione and the rate of cellular proliferation determine tumor cell sensitivity to tumor necrosis factor in vivo. Biochem J 1997; 325:183-9.
- 24. Balasenthil S, Saroja M, Ramachandran CR, Nagini S. Of humans and hamsters: comparative analysis of lipid peroxidation glutathione and glutathione-dependent enzymes during oral carcinogenesis. Br J Oral Maxillofac Surg 2000; 38:267-70.
- 25. Yang CR, Ou YC, Kuo JH, et al. Intracellular glutathione content of urothelial cancer in correlation to chemotherapy response. Cancer Lett 1997; 119:157-62.
- Doroshow JH. Glutathione peroxidase and oxidative stress. Toxicol Lett 1995;82-83:395-8.
- 27. Iscan M, Coban T, Cok I, et al. The organochlorine pesticide residues and antioxidant enzyme activities in human breast tumors: is there any association? Breast Cancer Res Treat 2002; 72:173.
- 28. Zachara B, Maclag A, Marchaluk E, Nowicki A. Selenium, glutathione and glutathione peroxidase in blood and tissues of breast cancer patients. In: Anke M, Meissner D, Mills CF, eds. Trace Elements in Man and Animals. New York: TEMA Verlag Media-Touristik, 1993: 789-93.
- Saydam N, Kirb A, Demir O, et al. Determination of glutathione, glutathione reductase, glutathione peroxidase and glutathione Stransferase levels in human lung cancer tissues. Cancer Lett 1997; 119:13-9.
- Matsui A, Ikeda T, Enomoto K, et al. Increased formation of oxidative DNA damage, 8-hydroxy-2¹-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett 2000; 151:87-95.
- Halliwell B. The antioxidant paradox. Lancet 2000; 355:1179-80.
- 32. Singal PK, Dhalla AK, Hill M, Thomas TP. Endogenous antioxidant changes in the myocardium in response to acute and chronic stress condition. Mol Cell Biochem 1993;129:179-86.
- 33. Kanter MM, Hamlin RL, Unverferth DV, Davis HW, Merola AJ. Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. J Appl Physiol 1985; 59:1298-303.
- 34. Lu YP, Lou YR, Yen P, et al. Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathione peroxidase and superoxide dismutase. Cancer Res 1997; 57:1468-74.