Life-threatening hyperkalaemia developing following excessive ingestion of orange juice in a patient with baseline normal renal function


ABSTRACT
Hyperkalaemia is a less-recognised life-threatening cause of paralysis. We describe a 51-year-old African-American man, who suffered from muscle weakness progressing to ascending symmetric paralysis, and inability to masticate. Physical examination revealed flaccid paralysis with areflexia of the four limbs. Computed tomography of the brain and cervical spine did not demonstrate any organic lesions. Laboratory investigations revealed serum potassium 9.0 mEq/L (not haemolysed), blood urea nitrogen 34 mg/dL, and serum creatinine 2.0 mg/dL. Electrocardiography showed typical features of hyperkalaemia. After emergent treatment for hyperkalaemia was initiated, serum potassium was rapidly-normalised to 5 mEq/L and all neuromuscular symptoms reversed within one hour. Upon reviewing his food and medication history, he admitted drinking 2.5 litres of orange juice (which contains about 450 mg of potassium in 1,000 ml) per day for the past three weeks to quench his thirst. Hyperkalaemia should be borne in mind in the differential diagnosis of acute paralysis. Hidden sources of potassium intake, such as orange juice, should not be overlooked, even in patients with baseline normal renal function.

Keywords: baseline normal renal function, orange juice, hyperkalaemia, paralysis, potassium intake

INTRODUCTION
Some fruit juices have a very high potassium content. Several cases of fruit juice-induced hyperkalaemia have been reported in the literature. We present a highly unusual case of a 51-year-old African-American man, with baseline normal renal function, who developed life-threatening hyperkalaemia (potassium 9.0 mEq/L) secondary to excessive orange juice consumption of about 2.5 L/day, leading to quadriparesis. Emergent treatment of hyperkalaemia saved his life. Hyperkalaemia of this extent, precipitated by a large amount of orange juice consumption and leading to quadriparesis, is extremely unusual.
The ability of the kidney to excrete potassium is flexible and adaptable. If dietary ingestion of potassium is increased over a number of days, the kidney increases daily potassium excretion to match. Because of this, dietary loads of potassium usually do not result in hyperkalaemia unless they are sudden, or paired with a defect in renal potassium handling. Likewise, conditions associated with the movement of intracellular potassium to the extracellular space are associated with only transient hyperkalaemia because either the kidneys excrete or the cells reuptake the excess potassium. Decrease in the ability of the kidney to excrete potassium increases its susceptibility to hyperkalaemia from increased potassium intake or transcellular shifts distal nephron.

Hyperkalaemia has been reported to follow the use of potassium chloride salt substitutes, even in the presence of normal renal function. One teaspoon of potassium chloride contains 50–65 mEq of potassium. Enteral nutrition supplements may be rich sources of potassium. Ensure Plus at 100 ml/hr provides 130 mEq of potassium per day.

Changes in the extracellular concentration can have dramatic effects on the resting membrane potential (Em). Alterations in the Em disrupt the normal function of neural, cardiac, and muscular tissues. Normal serum potassium ranges from 3.5 to 5.2 mmol/L. The molecular weight of potassium is 39.1, so a daily potassium intake of 80 mmol is roughly equivalent to 3.1 g of potassium. Potassium is rapidly and completely absorbed by the small intestine. Net gastrointestinal (GI) absorption (intake minus GI losses) is approximately 90%. Lower GI secretions have high concentrations of potassium, 80–90 mmol/L, but due to the limited amount of stool (80–120 g/d), daily GI excretion of potassium is only 10 mEq. Renal excretion of potassium can range from 5 to 500 mEq/d. Though 500 mmol of potassium is filtered by the glomerulus each day, essentially all of it is resorbed in the proximal tubule and loop of Henle. Any potassium that is ultimately excreted in the urine must be secreted by the tubules.

Table I. Common potassium-containing fruits and juices.

<table>
<thead>
<tr>
<th>Fruit/fruit juice</th>
<th>Unit (g)</th>
<th>K⁺ concentration (mmol/1,000 g)</th>
<th>K⁺ content (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>126</td>
<td>89</td>
<td>451</td>
</tr>
<tr>
<td>Tomato juice</td>
<td>227</td>
<td>59</td>
<td>533</td>
</tr>
<tr>
<td>Peach</td>
<td>98</td>
<td>48</td>
<td>190</td>
</tr>
<tr>
<td>Orange juice</td>
<td>227</td>
<td>48</td>
<td>436</td>
</tr>
<tr>
<td>Grapefruit juice</td>
<td>227</td>
<td>42</td>
<td>378</td>
</tr>
<tr>
<td>Apple juice</td>
<td>22</td>
<td>33</td>
<td>295</td>
</tr>
<tr>
<td>Grape juice</td>
<td>227</td>
<td>37</td>
<td>334</td>
</tr>
<tr>
<td>Honeydew melon*</td>
<td>1,340</td>
<td>65</td>
<td>3,500</td>
</tr>
<tr>
<td>Watermelon*</td>
<td>5,040</td>
<td>21</td>
<td>4,140</td>
</tr>
</tbody>
</table>

* 1 medium-sized fruit
* equivalent of 8 oz

The ability of the kidney to excrete potassium is flexible and adaptable. If dietary ingestion of potassium is increased over a number of days, the kidney increases daily potassium excretion to match. Because of this, dietary loads of potassium usually do not result in hyperkalaemia unless they are sudden, or paired with a defect in renal potassium handling. Likewise, conditions associated with the movement of intracellular potassium to the extracellular space are associated with only transient hyperkalaemia because either the kidneys excrete or the cells reuptake the excess potassium. Decrease in the ability of the kidney to excrete potassium increases its susceptibility to hyperkalaemia from increased potassium intake or transcellular shifts distal nephron. Hyperkalaemia has been reported to follow the use of potassium chloride salt substitutes, even in the presence of normal renal function. One teaspoon of potassium chloride contains 50–65 mEq of potassium. Enteral nutrition supplements may be rich sources of potassium. Ensure Plus at 100 ml/hr provides 130 mEq of potassium per day.

Changes in the extracellular concentration can have dramatic effects on the resting membrane potential and the cell’s ability to depolarise. As extracellular potassium rises, the normally negative Em increases toward zero; this allows easier depolarisation (i.e., increased excitability). Hyperkalaemia shortens the refractory period following depolarisation by facilitating faster potassium uptake. In the myocardium, inactivated sodium channels slow conduction velocity, and high serum potassium speeds repolarisation. On ECG, hyperkalaemia causes widened QRS complexes (slowed conduction velocity) and shortened ST intervals with tented T waves (rapid repolarisation). The slowed conduction associated with rapid repolarisation predisposes the myocardium to ventricular fibrillation. Ascending paralysis mimicking...
Guillain-Barré syndrome has been documented with a serum potassium level of 7 mmol/L. In a review of all published cases of hypokalaemic paralysis (excluding hereditary periodic paralysis), the average potassium level was 9 mmol/L. Electromyograms showed the paralysis to be due to abnormal nerve depolarisation rather than muscle pathology. (6)

Hyperkalaemic paralysis resulting from a plethora of causes can be simply divided into two groups, namely: familial hyperkalaemic periodic paralysis (HYPP) and secondary hyperkalaemic paralysis. The HYPP characterised by a suddenly-increased shift of cellular potassium into extracellular fluid is inherited as autosomal dominant, mainly due to inactivation mutations in the SCN4A gene encoding the tetrodotoxin-sensitive sodium channel of skeletal muscle. (8) The secondary hyperkalaemic paralysis can be caused by any aetiology of profound hyperkalaemia, such as excess potassium intake (salt substitutes, drugs or foods containing potassium) or potassium production (rhabdomyolysis, haemolysis), potassium redistribution (mannitol, succinylcholine, digoxin, and β-blockers) and reduced renal potassium excretion (Addison’s disease, hypoaldosteronism, obstructive uropathy, NSAIDs, cyclosporine, angiotensin-converting enzyme inhibitors, and potassium-sparing agents). (5, 10)

This patient suffered from the typical ascending paralysis. There were no other plausible causes for his paralysis except for extreme hyperkalaemia. Hyperkalaemia-induced paralysis was diagnosed from the fact that correction of hyperkalaemia rapidly terminated the paralysis without any sequela. He did not have the family history of paralysis to suggest familial HYPP or the secondary causes of hyperkalaemia, except the extremely high content of potassium input from the orange juice. Other important causes of acute paralysis, like Guillain-Barré Syndrome and even hypokalaemic paralysis (either primary or secondary), should also be considered in the differential diagnosis as they are also quite common and can have similar clinical findings. Because cardiac muscle is much more sensitive to hyperkalaemia, patients with hyperkalaemic paralysis usually show cardiac manifestations and typical ECG changes, like peak T-waves, prolonged P-R interval, loss of the P-wave amplitude, widening QRS complex, or “sine wave” pattern. Nevertheless, some patients with severe hyperkalaemia can manifest paralysis even without any cardiac features. (12)

The major morbidity and mortality of unrecognised hyperkalaemic paralysis include respiratory failure, life-threatening arrhythmias, and death. Immediate correction of hyperkalaemia not only terminates the paralysis but also reduces the potential risks related to it. (13) Both hypokalaemia and hyperkalaemia are common in HIV-infected patients. Hyperkalaemia and hyponatraemia may also be a manifestation of mineralocorticoid deficiency due to adrenal insufficiency or the syndrome of hyporeninemic hypoaldosteronism. (14) A systemic abnormality in potassium equilibrium, which favours the development of hyperkalaemia by a mechanism unrelated to renal potassium excretion, has also been identified in HIV-infected individuals. (15)

In the diagnosis of hyperkalaemia, urine chemistries have a limited role since they are primarily useful for differentiating decreased renal excretion from increased potassium loads. Increased potassium loads, whether endogenous or exogenous, rarely are an occult cause of persistent hyperkalaemia, and so the urinary chemistries nearly always point to inappropriate renal handling of potassium. (9) This case signifies the importance of history and knowledge of potassium contents of various foods consumed by patients in particular clinical scenarios.

REFERENCES