Single stage craniofacial reconstruction for fronto-nasal encephalocele and hypertelorism in an adult

ABSTRACT
The fronto-nasal type of fronto-ethmoidal encephalocele is one of the more common subtypes of anterior encephaloceles. We discuss different aspects and difficulties in the management of fronto-nasal encephalocele in a 30-year-old woman. Fronto-nasal encephaloceles present a difficult scenario in adults, mainly due to large gliotic herniating brain tissue, large bony and dural defect, increase in the size of paranasal sinuses, and scars from previous surgeries. However, all difficulties can be overcome after applying the principles of craniofacial reconstructions, i.e. correction of bone defect with autologous split calvarial graft, dural closure with autologous pericranial graft and correction of hypertelorism.

Keywords: anterior cranial fossa, calvarial graft, craniofacial reconstruction, fronto-nasal encephalocele, hypertelorism, single stage craniofacial reconstruction

INTRODUCTION
Encephaloceles are congenital lesions. They can be anatomically classified into: (a) sincipital or frontal encephalomeningocele; (b) posterior or occipital encephalocele; (c) basal encephalocele; and (d) parietal encephalocele. In the sincipital or fronto-ethmoidal type, the posterior limit of the skull defect is the crista galli. Sincipital or fronto-ethmoidal type can be further sub-classified into:

a. Fronto-ethmoidal encephalocele
 i. Naso-frontal
 ii. Naso-ethmoidal
 iii. Naso-orbital
b. Interfrontal encephalocele
c. Craniofacial cleft

The fronto-nasal type of fronto-ethmoidal encephalocele is one of the more common subtypes. In children, experienced cranio-facial teams equipped with good paediatric intensive care unit backups routinely perform single stage craniofacial reconstruction. In this case, we discuss different aspects and difficulties in the management of fronto-nasal encephalocele in an adult.

CASE REPORT
A 30-year-old woman presented with swelling over her nose, cosmetic deformity of the mid-face, and increased distance between both eyes since childhood. She had a scar over the swelling following an attempted surgery in her childhood (at the age of eight years) and it had increased in size over time. The wound healed without complications (i.e. cerebrospinal fluid leak) except for a scar (Fig. 1). On examination, she had widely-set eyes with increased intercanthal...
investigated with computed tomography (CT) with three-dimensional (3D) reconstruction that showed a defect in the anterior cranial base, through which herniated brain could be seen extending into the nasal cavity (Figs. 2 & 3a). 3D reconstruction also showed a defect in the nasion (Fig. 4a). All these features were suggestive of anterior encephalocele of the fronto-nasal type with hypertelorism. She was scheduled for a single stage surgery to correct hypertelorism and repair of dural and anterior cranial fossa defects.

A bicoronal skin incision was marked to gain wide exposure (Fig. 5). A scalp flap was raised and at the same time, a pericranial graft was also harvested to repair the dural defect. The scalp was reflected to expose frontal bone, both supraorbital rims, and the nasal bridge with bony defect (Fig. 6). The frontal sinus was not well developed in our case and did not pose much of a problem in performing the craniotomy. A bifrontal craniotomy (with Hudson’s brace and burrs) and bilateral supraorbital orbitotomy (with high speed electric drill) were performed (Fig. 6). The frontal bone flap was removed and a midline piece of frontal bone was removed separately, leaving the lateral part of the nasal bones intact with supraorbital ridges on both sides (Fig. 7). The frontal sinus was rudimentary and did not pose much difficulty. A thin rim of frontal bone was left attached on both sides to the cranium in order to facilitate the fixation of bone flaps. Both supraorbital ridges with lateral part of nasal bones were removed separately (Fig. 8). The basal dura was separated all around the herniating gliotic brain, and distance. She also had a small pulsatile swelling with palpable bony defect and a well-healed scar on the nose, more on the left side, with widening of the nose (Fig. 1). Preoperatively, she was

Fig. 2 Coronal CT image shows the defect in the cranial base and herniating brain tissue in the nasal cavity.

Fig. 3 Comparative (a) pre- and (b) postoperative coronal CT images shows the graft at the level of the cranial
Fig. 4 3D (a) pre- and (b) postoperative CT images. Preoperative image shows the defect in the nasion that is covered in the postoperative image.

Fig. 5 Clinical photograph shows bicoronal skin incision to gain wide exposure.

Fig. 6 Clinical photograph shows a widely-exposed frontal bone, bilateral supraorbital rims and defect in the nasal bone. It also shows marking for frontal craniotomy, bilateral orbitotomy and midline frontal calvarial graft.

Fig. 7 Clinical photograph shows part of the frontal bone is removed (later on used as split calvarial graft to reconstruct the cranial base) to expose the herniating brain.

Fig. 8 Clinical photograph shows rim of the frontal bone attached on both sides to the cranium after removal of the frontal bone and both supraorbital rims.
appropriate preoperative imaging will determine the single facial appearance dural repair, correct bone deficiency and restore aesthetic functional brain tissue.

The aim of surgical treatment is to restore the functional brain tissue in the cranial cavity, perform dural repair, correct bone deficiency and restore aesthetic facial appearance safely and successfully in a single stage. [85,10,11] In addition to clinical examination, appropriate preoperative imaging will determine the type of lesion, extent of the lesion (both intracranial and extracranial), and severity of the associated bone defect and cosmetic deformity. [12,13] CT with 3D reconstruction will show the extent of the bone defect and will help in surgical planning and repair of these large lesions. [13-16] In this case, clinically, the lesion was mainly situated over the bridge of the nose, which was represented by the healed scar of the previous surgery with obvious hypertelorism and cosmetic deformity, which grew over the years with the patient’s age (Fig. 1).

In the present case, CT showed details of the bony defect and extent of brain herniation (Figs. 2, 3a & 4a). Repair of these defects involved a multidisciplinary approach, encompassing neurosurgery, plastic surgery, maxillofacial surgery and anaesthesiology. [13-15] In comparison to children, management of fronto-nasal encephalocele is a difficult and challenging task in adults. As the age advances, the defect enlarges in size (this could be due to continuous pulsations of the brain), and there will be more gliotic brain tissue herniating into the defect and also an increase in the size of paranasal sinuses (i.e. frontal, in present case). In this case, it was further complicated by the facial scar (from the previous surgery) that had also increased in size over the years. The operative approach utilises a bifrontal craniotomy with resection of the encephalocele intradurally, repair of the anterior cranial fossa dura and osteoplastic repair of the bony defect. Cranial flap with orbital osteotomies permits correction of the hypertelorism and of the orbital dystopia associated with this malformation. [7,16,17] Surgery should provide a proper reconstruction to separate the sterile extradural space from the nasal cavity, correction of bony defects including anterior cranial fossa base, resection of gliotic brain tissue and correction of hypertelorism to restore aesthetics. We

DISCUSSION

Repair of fronto-nasal encephaloceles in the neonatal period may simplify the required operative procedures, [7] even in the large lesions. [9] Extracranial pathological findings of interest include herniating brain tissue, facial deformities, and fronto-nasal bone morphology. [9] The aim of surgical treatment is to restore the functional brain tissue in the cranial cavity, perform dural repair, correct bone deficiency and restore aesthetic facial appearance safely and successfully in a single stage. [9,10,11] In addition to clinical examination, appropriate preoperative imaging will determine the type of lesion, extent of the lesion (both intracranial and extracranial), and severity of the associated bone defect and cosmetic deformity. [12,13] CT with 3D reconstruction will show the extent of the bone defect and will help in surgical planning and repair of these large lesions. [13-16] In this case, clinically, the lesion was mainly situated over the bridge of the nose, which was represented by the healed scar of the previous surgery with obvious hypertelorism and cosmetic deformity, which grew over the years with the patient’s age (Fig. 1).

In the present case, CT showed details of the bony defect and extent of brain herniation (Figs. 2, 3a & 4a). Repair of these defects involved a multidisciplinary approach, encompassing neurosurgery, plastic surgery, maxillofacial surgery and anaesthesiology. [13-15] In comparison to children, management of fronto-nasal encephalocele is a difficult and challenging task in adults. As the age advances, the defect enlarges in size (this could be due to continuous pulsations of the brain), and there will be more gliotic brain tissue herniating into the defect and also an increase in the size of paranasal sinuses (i.e. frontal, in present case). In this case, it was further complicated by the facial scar (from the previous surgery) that had also increased in size over the years. The operative approach utilises a bifrontal craniotomy with resection of the encephalocele intradurally, repair of the anterior cranial fossa dura and osteoplastic repair of the bony defect. Cranial flap with orbital osteotomies permits correction of the hypertelorism and of the orbital dystopia associated with this malformation. [7,16,17] Surgery should provide a proper reconstruction to separate the sterile extradural space from the nasal cavity, correction of bony defects including anterior cranial fossa base, resection of gliotic brain tissue and correction of hypertelorism to restore aesthetics. We...
used a bicoronal incision to gain wide bifrontal exposure (Fig. 5).

As in the present case, a watertight and durable closure of the dural defect can be achieved by an autologous pericranial graft harvested while reflecting the scalp to prevent complications, such as meningitis, epidural abscess, cerebrospinal fluid leak, and brain herniation. This can be further reinforced by reconstructing the anterior cranial fossa base with an autologous bone graft. We used split calvarial graft from the frontal bone to bridge the defect in the anterior cranial fossa. Bilateral orbital osteotomies were performed to reduce the degree of hypertelorism with canthoplasty. Bone fragments were fixed to the arch of the frontal bone with micro/miniplates to gain rigid support (Fig. 9). In bone reconstructions, titanium miniplates can be used safely in adults, but resorbable devices are required in children because of growing tissues. A restoration of craniofacial malformations with good aesthetic and functional results can be achieved with early surgery. In summary, fronto-nasal encephaloceles present a difficult scenario in adults and is mainly due to large glotic herniating brain tissue, large bony and dural defect, thick calvarial bones, and scars from previous surgeries. However, all difficulties can be overcome after applying the principles of craniofacial reconstructions, i.e., correction of bone defect with autologous split calvarial graft, dural closure with autologous pericranial graft and correction of hypertelorism.

REFERENCES