USE OF CEFEPIME FOR THE TREATMENT OF INFECTIONS CAUSED BY EXTENDED SPECTRUM BETA-LACTAMASE-PRODUCING KLEBSIELLA PNEUMONIAE AND ESCHERICHIA COLI

Dear Sir,

Clinicians treating serious fulminant infections in patients in intensive care (ICU) are obliged to prescribe the most useful locally-available broad-spectrum parental antibiotics. While carbapenem formulations continue to be preferred globally for treatment of extended spectrum β-lactamase (ESBL)-producing bacteria, tigecycline, imipenem-cilastatin, and ceftazidime are alternative drugs used in European countries and the Americas. In several other countries, like India, the choice might be limited to cefepime, meropenem, imipenem, and piperacillin-tazobactam. Without retrospective data on the susceptibility profile of circulating organisms, the prescription might be far from ideal. There could be an astounding variation in the recorded performance of antibiotics elsewhere and the local ICU cases. That would be exemplified with cefepime in ESBL-producing Klebsiella pneumoniae and Escherichia coli.

Cefepime, the fourth generation cephalosporin, has an extended spectrum of activity, enhanced stability to β-lactamase hydrolysis, and superior penetration through the outer membrane of Gram-negative bacteria. Investigations in New York on the efficacy of cefepime to treat infections by ESBL-producing K. pneumoniae and E. coli on patients in medical ICU or a step-down ICU showed that cefepime was effective in the treatment of these infections. Nevertheless, the situation was different in ICU patients or those with fulminant infection in a tertiary care hospital in an Indian capital metropolis. The in-vitro susceptibility of ESBL-producing K. pneumoniae and E. coli to cefepime was much lower compared to susceptibility to meropenem and/or piperacillin-tazobactam. That was evident at the Sant Parmanand Hospital, a multi-specialty tertiary care and 140-bed hospital.

ESBL screening has been operational from February 2006 on isolates from patients in the medical, surgical and neonatal ICU and those with fulminant infections. ESBL production was determined according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) guidelines. The disk combination used was of ceftazidime, cefotaxime-clavulanic acid, and cefotaxime (Becton Dickinson, Sparks, Maryland). Differences in inhibitory zones of 5 mm or more indicated ESBL production. During the interval from March to October 2006, ESBL-positives identified included 30 patients with K. pneumoniae and 12 with E. coli. K. pneumoniae were drawn from the lungs of 15 patients, the urine of eight patients; the blood of one patient and purulent material of six patients. E. coli were isolated from the urine of seven cases; the blood of three cases and the purulent material of two cases. Of the 30 samples of K. pneumoniae, 29 were susceptible to meropenem and 25 to piperacillin-tazobactam, and of the 12 samples of E. coli, 11 were susceptible to meropenem and another 11 to piperacillin-tazobactam (Table I). Nine samples of K. pneumoniae were susceptible to all three antibiotics while a solitary E. coli was susceptible to cefepime only (Table II). The performance of cefepime was inferior to meropenem and piperacillin-tazobactam while the latter two profiles were similar. Fisher’s exact probability test values were worked out online at the following webpage: http://faculty.vassar.edu/lowry/fisher.html.

Table I. Susceptibility profile of ESBL-positive isolates.

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>K. pneumoniae (n = 30) [susceptible/resistant]</th>
<th>E. coli (n = 12) [susceptible/resistant]</th>
<th>Fisher’s test of significance between E. coli and K. pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefepime</td>
<td>12/18</td>
<td>5/7</td>
<td>Not significant</td>
</tr>
<tr>
<td>Meropenem</td>
<td>29/1</td>
<td>11/1</td>
<td>Not significant</td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>25/5</td>
<td>11/1</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

Cefepime susceptibility for K. pneumoniae and E. coli were poor in comparison with meropenem and piperacillin-tazobactam: Fisher’s p < 0.001 and p = 0.0011, respectively.

Table II. Differential susceptibility profile of ESBL-producers.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Susceptible to meropenem, piperacillin-tazobactam and cefepime</th>
<th>Susceptible to meropenem, resistant to piperacillin-tazobactam but susceptible to cefepime</th>
<th>Susceptible to meropenem only</th>
<th>Susceptible to cefepime only</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. pneumoniae</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>E. coli</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Poor cefepime in-vitro susceptibility in the hospital has been rather surprising. During 2004–2005, 128 ESBL-positive isolates of K. pneumoniae from Iranian patients at two teaching hospitals in Iran were uniformly susceptible to meropenem and imipenem. On the contrary, 40% were resistant to cefepime. The over-the-counter sale of medicines and counterfeit medicines have been common without any benefits for the patients. Furthermore, any suboptimal dose and/or duration of therapy would support selection and dissemination of cefepime resistant ESBL-producing K. pneumoniae and E. coli.

There would be some delay in prescribing antibiotics matching the in-vitro susceptibility for an ICU isolate. Nevertheless, retrospective susceptibility profiles on local ICU isolates should support the rational selection of broader-spectrum antibiotics. This has indeed been the case with us while awaiting in-vitro reports; meropenem or piperacillin-tazobactam would be preferred over cefepime.

Yours sincerely,

Subhash C Arya
Nirmala Agarwal
Bhavani S Solanki
Shekhar Agarwal

Sant Parmanand Hospital
18 Alipore Road
Delhi 110054
India
Tel: (91) 11 981 064 2269
Fax: (91) 11 2397 4706
Email: subhashji@hotmail.com

ACKNOWLEDGEMENT

We acknowledge the secretarial assistance of Ms Sarita Kumar and the technical assistance of Ms Nisha Mashi and Jenimol Varghese.

REFERENCES