OBSESSIVE COMPULSIVE DISORDER - A NEUROPSYCHIATRIC ILLNESS

S M Ko

ABSTRACT
Until recently, obsessive compulsive disorder (OCD) was thought to be a rare condition. However, with the advent of effective anti-obessional treatments - both behaviourally and pharmacologically - there has been a surge in research on the aetiology, epidemiology, and pathophysiology of this condition. Once viewed predominantly as a manifestation of psychodynamic conflict, OCD is now considered a model neuropsychiatric disorder. This article considers the psychological phenomena of obsessions and compulsions from a biological viewpoint. This is made possible with the rapid growth and development in the research on the neurobiology of brain functions, including molecular genetics, neuroimaging and receptor subtyping, as well as neuroendocrinological studies in OCD patients.

INTRODUCTION
Until recently, obsessive compulsive disorder (OCD) was thought to be a rare condition. However, with the advent of effective anti-obessional treatments - both behaviourally and pharmacologically - there has been a surge in research on the aetiology, epidemiology, and pathophysiology of this condition. Once viewed predominantly as a manifestation of psychodynamic conflict, OCD is now considered a model neuropsychiatric disorder. This article considers the psychological phenomena of obsessions and compulsions from a biological viewpoint. This is made possible with the rapid growth and development in the research on the neurobiology of brain functions, including molecular genetics, neuroimaging and receptor subtyping, as well as neuroendocrinological studies in OCD patients.

NEUROLOGICAL FINDINGS
Neurological findings in OCD include its onset following head injury11,12, and Von Economo's encephalitis13,14. Birth trauma15 as well as a higher incidence of childhood onset OCD in males16 suggest possible neurological dysfunction as a result of early developmental trauma in some OCD patients. Premorbidly, there are reports of a high prevalence of neurological insults in OCD patients, such as meningitis, encephalitis, seizures and Sydenham's chorea17 - the latter suggests involvement of the basal ganglia18. The well-known association between obsessions and compulsions with the neuropsychiatric condition of Tourette's Syndrome (TS), as well as a high rate of OCD in the first-degree relatives of TS patients suggests a genetic linkage19,20. Moreover, approximately 20% of OCD patients satisfy the criteria for a comorbid diagnosis of TS or other tic disorder, while more than 50% of TS patients also meet the Diagnostic and Statistical

Manual Criteria for OCD11, Finally, the simultaneous occurrence of obsessional neurosis in nine diabetes insipidus patients point to a possible hypothalamic disturbance in OCD12,13.

Laterality
Psycholinguistic techniques, handedness, electroencephalography (EEG) and dichotic listening tasks have been used to investigate laterality. In a small group of nine childhood OCD patients, Rapoport et al.20 reported that dichotic listening findings indicated a lack of laterality in childhood OCD patients compared to normal, suggesting less dominance of the left hemisphere. In addition, 22% of the patients were left-handed compared to 10% in the general population. OCD patients also displayed a lack of left hemispheric dominance on EEG during verbal tasks. However, as the absence of laterality has also been reported in other psychiatric disorders, this may be a nonspecific finding21.

Neurological soft-signs
The presence of neurological soft-signs is often cited as evidence favouring a neurobiological basis for OCD. More abnormalities in fine motor co-ordination, involuntary and mirror movements, and visuospatial functions were found in OCD patients than matched controls15,16. In a fairly substantial sample of 54 childhood OCD patients examined by a neuropsychologist using the Physical Neurological Examination for Soft-Signs (PANESS), 44 were found to have abnormal neurological findings, and only 10 had no evidence of neurodevelopmental abnormalities22. The former included 18 with choreiform movements, 13 with nonspecific neurodevelopmental signs, 8 with left hemisindrome and 5 with other miscellaneous findings. It was suggested that choreiform movements may be a marker for caudate/basal ganglia abnormalities and frontal-caudate disinhibition. Adult OCD patients were also found to demonstrate significantly more soft-signs than normal control23. In spite of these impressive findings, studies have also documented a link between neurological soft-signs and other psychiatric illnesses such as asocial schizophrenia and emotionally unstable character disorder24, as well as childhood hyperactivity and minimal brain dysfunction25.
Neuropsychology
Report of neuropsychological tests in OCD patients demonstrated bilateral20 or dominant (left) frontal lobe dysfunction21. OCD patients were also found to have marked abnormal tendency to perseverate22 which is again due to frontal lobe impairment. Yet, Insel et al failed to confirm frontal lobe dysfunction in OCD, and instead, OCD patients showed impaired tactile performance test, indicating possible difficulty in visuospatial orientation23. Like most other psychiatric disorder, OCD is probably a clinical syndrome, and thus it is not surprising that not all OCD patients manifest a common cognitive deficit which could be tapped by a standardised neuropsychiatric battery or psychometric testing. There may be subgroups of OCD patients who exhibit visuospatial/visuo perceptual deficits, some with more circumscribed deficits such as frontal lobe dysfunction, and others with a more global organicity16.

Electrophysiology
Abnormalities in electroencephalography (EEG) have been reported in OCD patients16,17, with similarities to the EEG of temporal lobe epilepsy24 or shortened REM latency in the sleep EEG of OCD patients as seen in depression25. Visual evoked potential (EP) studies demonstrate shortened latencies of late event-related potentials in the potentials of N200 and P300 compared to controls, with group differences becoming greater during more difficult discrimination tasks26,31. This suggests that OCD patients are hypervigilant and react very strongly to novel stimuli. Furthermore, the more difficult the discrimination task, the more hypervigilant the OCD patient becomes and the shorter the P300 latency32. In contrast, normals show longer latencies for more difficult discrimination tasks. Moreover, the briefer latency of N200 and P300 components in OCD patients contrasts those of other psychiatric disorders (schizophrenia and depression) which show either longer latencies or no differences in comparison to normal controls.

Neuromaging
Studies using positron emission tomography (PET) have reported abnormalities in the metabolism of glucose in the caudate nucleus of OCD patients9,10,30. An association between metabolic dysfunction in the basal ganglia and the frontal cortex has been observed, suggesting a functional alteration of the cortico-limbic circuits, and involving the orbital prefrontal cortex and the striatum in the mediation of OCD behaviours, as well as those of the related Gilles de la Tourette Syndrome eg Sydenham’s chorea and the Merge Syndrome. Interestingly, respondents of OCD patients to clomipramine14,35 or behaviour therapy36 showed a return of regional brain metabolism to a more normal level in regions of the orbital frontal cortex and caudate nucleus compared to non-responders to either treatment.

An initial computerised tomography (CT) study on 10 OCD patients (aged 18 to 65) by Insel et al in 198325 showed no significant difference between OCD subjects and controls on the ventricle to brain ratios (VBRs). Just a year later, Behar et al58 study of childhood onset OCD reported greater VBRs in OCD subjects than controls, especially in those with compulsions alone than in those with obsessions. Luxenberg et al17 found smaller caudate nuclei in OCD subjects than controls, again implicating the basal ganglia in the pathogenesis of OCD.

Neuropharmacology and neuroendocrinology
Initial clinical trials demonstrating the effectiveness of clomipramine, the 3-chloro analog of the tricyclic imipramine, in the treatment of resistant depression with coexistent obsessive compulsive symptoms led to a surge into the research of the serotonin-hypothesis of OCD. Two double-blind studies at 21 centres in 520 OCD patients reported a mean reduction of 41% in the Yale-Brown Obsessive Compulsive Scale score in clomipramine-treated patients compared with only 4% for patients on placebo30. That serotonin is the important neurotransmitter in the aetiology of OCD was further strengthened by controlled trials of fluvoxamine and clomipramine versus desipramine, a potent noradrenergic reuptake inhibitor with little or no serotonergic effect; these trials demonstrated their anti-obsessional efficacy and superiority over desipramine29-41. Furthermore, levels of clomipramine and its metabolite desmethyliclomipramine (a potent inhibitor of noradrenergic reuptake) corresponded with improvement of OCD symptoms42,43.

Development of new selective serotonin reuptake inhibitors (SSRIs) and their unequivocal efficacy in OCD patients give additional credibility to the serotonin-hypothesis. These included a multicentre double-blind, placebo-controlled trial of fluvoxamine in more than 300 OCD outpatients by Greist et al44, a multicentre trial of fluoxetine in 355 OCD patients by Toft et al45, and another multicentre trial of sertraline in 87 OCD patients by Chouinard et al46. At a neuroendocrine level, the pharmacological probe meta-chlorophenylpiperazine (mCPP), administered orally47 or intravenously48, has been shown to induce an acute exacerbation of OCD symptoms. In addition, these studies also demonstrated that administration of mescaline (a potent serotonin antagonist) prior to mCPP administration prevented the exacerbation of OCD symptoms.

CONCLUSION
The shift from a psychoanalytical approach in OCD towards a more neuropsychiatric stance is evidenced by the various studies cited above. OCD as a whole shows more differences than normal controls, and more similarities to Tourette Syndrome than most other neurotic disorders in neurological signs, electrophysiology and neuropsychology. Yet OCD is probably not a homogenous condition, with a subgroup that responds extremely well to purely psychological and behavioural treatment, and another only on drugs, especially the selective serotonin reuptake inhibitors. Studies are still required to identify the presence of distinct subgroups of OCD patients, so that appropriate treatment may be instituted, and hopefully with good response. In this way, the sufferings of both patients and their families may be alleviated.

REFERENCES


