DETERMINATION OF MINERAL, PARATHYROID HORMONE AND 6-KETO-PROSTAGLANDIN-F\textsubscript{1α} LEVELS IN PREGNANT WOMEN WITH HYPERTENSION AND PRE-ECLAMPSIA

S Sulaiman, N Adeeb, N Muslim, N Adeeb C M Ho

ABSTRACT
Determinations of total calcium, total magnesium, calcium ion, parathyroid hormone and 6-keto-prostaglandin-F\textsubscript{1α} levels were carried out on 84 blood samples from 4 groups of women categorised as non-pregnant normotensive (NNP), pregnant normotensive (NP), pregnancy-induced hypertension (PIH) and pre-eclampsia (PE). PIH was clinically diagnosed when the diastolic pressure was more than 90 mmHg and was only hypertensive during pregnancy while PE was with additional proteinuria after 20 weeks of gestation. Compared to NNP women, total calcium and parathyroid hormone levels were of lower levels (p<0.05) in NP women while in PIH women, total calcium and 6-keto-prostaglandin-F\textsubscript{1α} levels were also lowered (p<0.05). Compared to NNP women, PE women’s levels of total calcium, calcium ion and 6-keto-prostaglandin-F\textsubscript{1α} decreased (p<0.05) while parathyroid hormone level increased (p<0.05). When compared to the NP women, PE women had decreased levels (p<0.05) of total calcium as well as calcium ion and increased level (p<0.05) of parathyroid hormone. Calcium ion was found to be negatively correlated (NNP : r = -0.883, p = 0.008 / NP : r = -0.931, p = 0.000) while parathyroid hormone was positively correlated (NNP : r = 0.904, p = 0.013 / NP : r = 0.913, p = 0.000) with mean arterial pressure.

Keywords: calcium, magnesium, parathyroid hormone, 6-keto-prostaglandin-F\textsubscript{1α}, pre-eclampsia

INTRODUCTION
Hypertension has always been a major problem to manage in the field of Medicine. It is also widely known as a silent killer which if not detected early may cause death10. Pregnancy accompanied by hypertension is fatal to both mother and foetus. Various changes occur during pregnancy, which are aggravated with the presence of hypertension. Pregnancy-induced hypertension (PIH) is only detected during pregnancy by signs of a higher blood pressure than normal, without any signs of abnormal proteinuria or edema, and the blood level will decrease to normal within the puerperal period. Pre-eclampsia (PE), on the other hand, is present with similar symptoms as PIH plus significant proteinuria. It has been reported that pre-eclampsia and eclampsia kill about 5 million pregnant mothers and their foetuses annually in the world13.

In 1984, Erne and associates15 found an increase in free calcium in platelets of PIH compared to normotensive pregnant women. In 1991, Frolich and coworkers16 found lowered levels of serum parathyroid hormone in PE compared to normotensive pregnant women in the third trimester. In 1992, Seely and coworkers17 reported findings of decreased urinary calcium, increased serum Vitamin D levels in PE compared to normotensive pregnant women. To investigate Malaysian PIH and PE patients, in this study we measured calcium, magnesium, PTH and 6-keto prostaglandin-F\textsubscript{1α} (6-keto-PGF\textsubscript{1α}), a stable metabolite of prostacyclin. Calcium and 6-keto-PGF\textsubscript{1α} are involved in the regulation of blood pressure while magnesium and PTH are important components of calcium homeostasis.

MATERIALS AND METHODS
Blood samples from 84 individuals were obtained, of which 18 were non-pregnant normotensive (NNP), 24 were pregnant, normotensive (NP), 26 were women with pregnancy-induced hypertension (PIH) and 16 were women with pre-eclampsia (PE). All subjects were between the ages of 20 and 40 years and pregnant subjects were in their third trimester. PIH subjects were clinically characterised with a diastolic pressure of more than 90 mmHg and were only hypertensive during pregnancy while PE subjects had proteinuria, a protein volume of more than 300 mg/ml urine over 24 hours. The distribution of samples are as illustrated in Table 1. Blood samples of 10 ml from each subject were separated into plasma and serum. They were then kept at a temperature of -70°C till further analysis was done.

Serum total calcium and magnesium were measured by atomic absorption spectrophotometry at a wavelength of 422.7 nm and 285.2 nm respectively19. The measurement of calcium ion levels involved Biuret and Bromocresol Green tests20. Serum parathyroid hormone levels were measured by a radioimmunoassay kit (Nichols Institute Diagnostic). The
Fig 1 – Comparison of average total calcium, free calcium, total magnesium, parathyroid hormone (PTH), 6-keto-prostaglandin-F$_{1α}$ values between four categories. The values are in mean ± standard deviation (SD).

Shading of bar chart for four categories: \[\text{I}\] = non-pregnant normotensive (NPN), \[\text{II}\] = pregnant normotensive (NP), \[\text{III}\] = pregnancy-induced hypertension (PIH), \[\text{IV}\] = pre-eclampsia (PE). n = number of samples. Significant difference ($p<0.05$) was found when compared with NPN (*) and NP (**).

assay involved the use of 131I and intact PTH10 was measured. Measurement of the 6-keto-PGF$_{1α}$ level in blood plasma also required the use of a radioisotopic kit (Amersham International) which involved the use of 3H.

The data was analysed statistically by unpaired Student's t test, regression and correlation tests. A p value $<$0.05 was considered significant.

RESULTS
From this study, minerals, parathyroid hormone and 6-keto-prostaglandin-F$_{1α}$ affect both pregnancy and hypertension. With reference to Fig 1, the following results were found. In pregnant normotensive women, total calcium and PTH levels were found to decrease ($p<0.05$), compared to non-pregnant normotensive women. In PIH patients, total calcium and 6-keto-PGF$_{1α}$ levels decreased significantly ($p<0.05$) compared to subjects who were non-pregnant normotensive.

In pre-eclampsia patients, total calcium, calcium ion and 6-keto-PGF$_{1α}$ levels decreased ($p<0.05$) while PTH level increased ($p<0.05$) compared to the non-pregnant normotensive group. Total calcium and calcium ion levels decreased ($p<0.05$) while PTH level increased ($p<0.05$) when compared to the pregnant, normotensive women.

Calcium ion was found to be negatively correlated (NPN: $r = -0.883$, $p = 0.008$ / NP: $r = -0.931$, $p = 0.000$) while PTH was positively correlated (NPN: $r = 0.904$, $p = 0.013$ / NP: $r = 0.913$, $p = 0.000$) with mean arterial pressure (MAP). Also, total magnesium had a positive correlation with PTH ($r = 0.49$, $p = 0.039$).

DISCUSSION
In this study, for normal pregnancy, total calcium level was found to be decreased by 10% from the mean value of NNP subjects. This maybe due to the additional requirement of calcium for not only the mother, but also the foetus. Calcium ions are directly involved in the contraction of smooth muscles whereby the size of the lumen of the muscle affects blood pressure. Therefore, the better parameter to measure is the ionic calcium, not total calcium. The level of ionic calcium was also found to be significantly decreased in PIH and PE.
Table 1 - Distribution of samples within the four categories (mean±SD).

<table>
<thead>
<tr>
<th>Category</th>
<th>NNP</th>
<th>NP</th>
<th>PH</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (84)</td>
<td>18</td>
<td>24</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>Race: C/M</td>
<td>3 / 12</td>
<td>3 / 16</td>
<td>5 / 18</td>
<td>3 / 11</td>
</tr>
<tr>
<td>Age (years)</td>
<td>29.78±8.68</td>
<td>29.35±5.64</td>
<td>30.15±7.93</td>
<td>30.13±7.32</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>60.39±13.33</td>
<td>70.29±11.80</td>
<td>70.68±12.05</td>
<td>69.90±8.80</td>
</tr>
<tr>
<td>Gestation (wks)</td>
<td>-</td>
<td>32.53±3.94</td>
<td>33.12±6.87</td>
<td>32.75±3.49</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>78.22±18.88</td>
<td>85.55±5.87</td>
<td>103.4±20.24</td>
<td>116.48±9.26</td>
</tr>
</tbody>
</table>

Key: NNP = non-pregnant, normotensive; NP = pregnant normotensive; PH = pregnancy-induced hypertension; PE = pre-eclampsia; Race: C = Chinese, M = Malay, I = Indian; MAP = mean arterial pressure.

subjects as compared to both NNP and NP subjects. During PE, the capillary of the glomerulus was found to be more permeable to plasma protein(20). This may partly explain the lower level of calcium ions seen in PE subjects in this study.

No significant change was found in the level of total magnesium in any of the categories studied. No change has been detected since the active form of magnesium, like calcium, is the ionic form not the total form(20). It had been suggested that the ionized form of magnesium and calcium which will compete for the active site to bring about the suitable physiologic changes(20). If there was any change in the ionized magnesium, this was not reflected by the level of total magnesium found in this study.

PTH level during normal pregnancy decreased significantly by 22% compared to NNP subjects. With the observation that total and ionized calcium also decreased in these subjects, dilution of these parameters in the plasma by expansion of plasma volume in normal pregnancy could be the explanation. There have been studies that reported findings of plasma volume expansion in NP subjects(22).

For PH, the PTH level was similar to the NNP level but increased compared to NP level. While for PE, the PTH level was significantly increased by 57% and 76% compared to NNP and NP levels respectively. On the other hand, ionized calcium was found to be decreased in both PH and PE groups. Unlike NP condition, plasma volume expansion in PH and PE were found to be decreased(23). Thus, reduced ionized calcium is a true picture of a PE state. It remained low even though the PTH level was high, implicating that for the PE state, a higher PTH level was required to achieve a given level of ionised calcium to meet the foetal demand.

For the NNP and NP groups, ionized calcium was found to be negatively correlated with mean arterial pressure (MAP) while the reverse was observed for PTH. Studies of calcium supplementation to women with PH demonstrated a reduction in their blood pressures after supplementation(9, 10). This suggests that abnormalities in calcium metabolism exist in PH women and may contribute to their hypertension.

In PH subjects, the level of 6-keto-PGF1α was found to be decreased by 4% and 2% from the NNP and NP levels respectively. This maybe due to the disability of the umbilical arteries to produce enough prostacyclin(16). A hypothesis suggested that this maybe the result of a disorder in the endothelial function or immune complex that prevents the synthesis of prostacyclin(PGF1α) without affecting the synthesis of thromboxane(TXA2). The level of 6-keto-PGF1α in PE subjects was also found to be significantly decreased by 6% as compared to NNP subjects. This result supports similar findings of other workers(18-20).

It has been suggested that the imbalance in PGF1α production in relation to TXA2 production and restoration of normal PGF1α/TXA2 ratio, which is decreased in PE, is the rationale for low-dose aspirin therapy in these patients(20, 21).

CONCLUSION

This study showed that a definite pattern of change occurs in the levels of calcium, magnesium, PTH and 6-keto-PGF1α in subjects with PH and PE. Our Malaysian results on serum PTH and ionized calcium as well as plasma 6-keto-PGF1α in PE and PH patients support the findings of Western workers.

REFERENCES

19th ILAR Congress on Rheumatology
8 – 13 June 1997
Venue: Singapore International Convention & Exhibition Centre

Scientific Programme

* Masterclasses
* Plenary Lectures
* Symposia/Workshop/Debates
* Poster Sessions and Discussions

Scientific Highlights include

* Immunopathogenic Mechanisms of Rheumatic Disease
* Genetics in Autoimmune Diseases
* Bone and Cartilage Metabolism in Health and Disease
* Environmental Agents in Rheumatic Disease
* Epidemiology of Rheumatic Disease
* Evaluation of Rheumatic Disease
* Management of Specific Rheumatic Diseases

For further information, please contact:

ILAR '97 SECRETARIAT
Communication Consultants
336 Smith Street
#06-302 New Bridge Centre
Singapore 0105
Tel: (65) 227-9811
Fax: (65) 227-0257