PREOXYGENATION IN PARTURIENTS: A COMPARISON OF 4, 6 AND 8 VITAL CAPACITY BREATHS TO 5 MINUTES OF TIDAL VOLUME BREATHING

E Y R Chin, S Y Chan, Y Y Yip, J L Chong

ABSTRACT

We compared the difference in denitrogenation (by intermittent measurement of arterial tension, \(\text{PaO}_2 \)) in 45 parturients at term when preoxygenated with 4, 6 or 8 rapid vital capacity breaths and 5 minutes of tidal volume breathing. Oxygen, at 8 litres min\(^{-1} \), was delivered through a facemask via a circle absorber with a 2 litre reservoir bag. Higher \(\text{PaO}_2 \) was produced with 5 minutes of tidal volume breathing. This differed significantly from the \(\text{PaO}_2 \) produced by 4, 6 or 8 rapid vital capacity breaths (\(p < 0.01 \)).

Keywords: Preoxygenation, Parturients.

INTRODUCTION

Preoxygenation aims to increase oxygen reserves in order to increase the duration of apnoea that will be possible before the onset of hypoxia. The need to preoxygenate all patients prior to the induction of balanced anaesthesia has been firmly established for the last three and a half decades. Traditionally, this consisted of tidal volume breathing of 100% \(\text{O}_2 \) for 3-5 minutes (1, 2).

A new method, the four rapid vital capacity breaths which can be performed within 30 seconds was advocated to be just as effective by Gold et al (3). This was demonstrated to allow three minutes of apnoea without arterial desaturation of greater than 6% by Drumond et al (4) and to be safe in the parturient by Norris et al (5).

Department of Anaesthesia
Kandang Kerbau Hospital
Hampshire Road
Singapore 0621

E Y R Chin, MBBS, M Med (Anaesthesia) Registrar

S Y Chan, MBBS, M Med (Anaesthesia) Registrar

J L Chong, MBBS, M Med (Anaesthesia) Registrar

Department of Paediatrics
National University Hospital
Lower Kent Ridge Road
Singapore 0511

Y Y Yip, MBBS Lecturer

However, recent studies (6, 7) utilizing the mass spectrometer, which measures concentration of gases continuously, demonstrated suboptimal oxygenation with 4 vital capacity breaths and suggest that 8 vital capacity breaths may be required to provide maximum oxygenation.

In view of the conflicting evidence, it is necessary to re-examine "the 4 rapid vital capacity breaths" technique of preoxygenation. We compared the efficacy of different techniques of preoxygenation in parturients at term as they were most at risk. Pregnancy being associated with a 20% decrease in functional residual capacity (FRC) and a 20% increase in oxygen consumption (8). Furthermore most of the published work on preoxygenation has concerned the nonpregnant general surgical patient.

Study design took into consideration the limitations and constraints faced during the conduct of anaesthesia in the operation theatre. In addition, patients were preoxygenated for 5 minutes as we were interested in maximum oxygen reserves.

The objective of this study was to ascertain (from among the methods studied) which method of preoxygenation in pregnant patients provided maximum oxygen reserves with reference to arterial oxygen tension (\(\text{PaO}_2 \)).

METHOD

After approval from the Medical Clinical Research Committee, informed consent was obtained from 45 patients between the age of 18-40 years, normal and healthy (ASA I) and non-smokers. They had been scheduled for elective caesarean section at term. All pregnancies were singleton and uncomplicated. Patients were randomly assigned to one of the three groups which differed only in the number of rapid vital capacity breaths administered:

- **Group A**: 4 rapid vital capacity breaths
- **Group B**: 6 rapid vital capacity breaths
- **Group C**: 8 rapid vital capacity breaths

In group A, patients preoxygenated for 5 minutes by tidal volume breathing (TVB) and all patients were monitored for three minutes of apnoea. If arterial oxygen tension \(\text{PaO}_2 \) dropped below 45 mmHg, a further 2 minutes of preoxygenation was administered. In this study, 45 parturients at term were studied which comprised of a total of 135 breaths.
Group B : 6 rapid vital capacity breaths
Group C : 8 rapid vital capacity breaths

Fig 1
The mean PaO₂ mmHg achieved for the various techniques of preoxygenation in groups A, B and C

Results
There were no significant differences (p > 0.05) between the three groups of patients in terms of age, height and weight (Table I).

Table I
Characteristics of the Study Sample Illustrating Age (Mean ± SD), Height (Mean ± SD) and Weight (Mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Group A (n=15)</th>
<th>Group B (n=15)</th>
<th>Group C (n=15)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>30.5±6.1</td>
<td>30.9±6.4</td>
<td>32.2±4.6</td>
<td>p>0.05</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>152.9±5.3</td>
<td>154.4±5.5</td>
<td>154.4±5.3</td>
<td>p>0.05</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>63.1±5.6</td>
<td>65.1±11.5</td>
<td>59.4±9.1</td>
<td>p>0.05</td>
</tr>
</tbody>
</table>

* One way analysis of variance used for comparing the means of each variable between groups A, B and C.

Table II
Arterial tension of oxygen (mmHg) achieved by Breathing Air (Mean ± SD), Rapid Vital Capacity Breaths (Mean ± SD) and 5 minutes of Tidal Volume Breathing (Mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Group A (n=15)</th>
<th>Group B (n=15)</th>
<th>Group C (n=15)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathing Air</td>
<td>108.9±15.9</td>
<td>104.1±12.0</td>
<td>106.7±11.5</td>
<td>p>0.05</td>
</tr>
<tr>
<td>Rapid Vital Capacity Breaths</td>
<td>263.9±63.7</td>
<td>303.3±77.4</td>
<td>359.0±73.8</td>
<td>p<0.01**</td>
</tr>
<tr>
<td>5 minutes of Tidal Volume Breathing</td>
<td>402.6±60.1</td>
<td>397.0±122.0</td>
<td>409.0±81.6</td>
<td>p>0.05</td>
</tr>
<tr>
<td>p value #</td>
<td>p<0.01</td>
<td>p<0.01</td>
<td>p<0.01</td>
<td></td>
</tr>
</tbody>
</table>

* One way analysis of variance used for comparing the mean PaO₂ of groups A, B and C.

** Analysis of these values with t test with bonferroni inequality showed that only mean PaO₂ of groups A and C were significantly different.

Paired t test used to compare the means of PaO₂ obtained by rapid vital capacity and 5 minutes of tidal volume breathing for groups A, B and C.

No significant differences were detected by analysis of variance between PaO₂ achieved after 5 minutes of tidal volume breathing (sample 3) between the three groups A, B and C (Table II).

Significant differences were detected by one way analysis of variance between the PaO₂ achieved in groups A, B and C by 4, 6 and 8 rapid vital capacity breaths respectively (sample 2) (p < 0.01). When these results
were reanalysed using t test (with Bonferroni inequality applied to these results), no significant differences were detected between groups A and B, and between groups B and C. However the PaO₂ of groups A and C were found to be significantly different (p < 0.01) (Table II p value*).

When the paired t test was used to compare PaO₂ obtained by 4, 6 and 8 rapid vital capacity breaths (sample 2) to their respective PaO₂ obtained by 5 minutes of tidal volume breathing (sample 3), statistically significant differences (p < 0.01) were found between these two values of PaO₂ in each of the three groups (Table II p value#).

DISCUSSION

The need for preoxygenation with 100% oxygen to increase oxygen stores in the body to prevent hypoxia during the apnoic interval following an induction sequence with intravenous anaesthetics and neuromuscular blockers in patients with full stomach is firmly established (2). However the choice of technique to achieve maximum oxygen reserves is controversial. The gold standard for preoxygenation, tidal volume breathing for 3 to 5 minutes, was questioned by Gold et al (3) who demonstrated a comparable increase in PaO₂ in twenty two ASA I and II patients when preoxygenated with 4 rapid vital capacity breaths.

They were further supported by Drumond et al, who demonstrated similiar desaturation in normal healthy cooperative patients preoxygenated with either one minute of tidal volume breathing or three vital capacity breaths. Additionally, Norris et al (5) also demonstrated comparable increase in PaO₂ in twenty ASA I and II parturients preoxygenated with either three minutes of tidal volume or 4 rapid vital capacity breaths.

However, more recent studies utilising the mass spectrometer, (6, 7) suggest that 4 rapid vital capacity breaths is inferior to 3-5 minutes of tidal volume breathing in producing larger oxygen reserves.

Larger oxygen reserves is intuitively correlated with an increased ability to withstand the adverse effects of hypoxia; the greater the oxygen reserves the longer the time before hypoxic cerebral damage occurs. Parturients at term are particularly prone to hypoxia during the apnoic interval, as they have an increased basal oxygen consumption and a reduced oxygen reserve secondary to a decrease in functional residual capacity. This predisposition assumes greater clinical relevance when difficult intubation is anticipated.

In this study, which used PaO₂ as an index of oxygenation, comparison of the various techniques of oxygenation showed that highest PaO₂ was achieved in parturients only after five minutes of tidal volume breathing and that four rapid vital capacity breaths advocated by Gold et al (3) for preoxygenation of nonpregnant was the least effective technique and produced the lowest PaO₂ in our patients. This is in agreement with the findings obtained by Russell et al (7). Using the mass spectrometer, they demonstrated lower alveolar oxygen content in twenty ASA I parturients when preoxygenated with four slow vital capacity breaths when a Magill circuit with an oxygen flow of 8 litres min-

1 was used when compared to 2 minutes of tidal volume breathing.

The PaO₂ produced by 4, 6 and 8 rapid vital capacity breaths in our patients were significantly lower to PaO₂ produced by 5 minutes of tidal volume breathing (p < 0.01). This finding was similar to to the result obtained by Crush et al (6) even though their work was on nonpregnant ASA I healthy volunteers. They demonstrated, using the mass spectrometer, that at least eight rapid vital capacity were required to produce an equivalent desaturation of lungs to two minutes of tidal volume breathing in these volunteers breathing from a circle absorber with with oxygen flowing at 10 litres min-1.

The results obtained from this study and the Russell study are contradictory to those obtained by Norris et al (5) in that 4 rapid or slow vital capacity breaths do not oxygenate parturients to the same degree as 2-5 minutes of tidal volume breathing.

The PaO₂ achieved after 3 minutes of tidal volume (385 ± 23 mmHg) in the Norris study, appears to be similar to the PaO₂ achieved by 5 minutes of tidal volume in this study (402 ± 80, 397 ± 112 and 409 ± 81 mmHg) when the two different time intervals were considered. However the PaO₂ achieved by 4 rapid vital capacity were significantly greater in the Norris study (PaO₂, 404 ± 15 mmHg) when compared to the results of this study (PaO₂, 269 ± 63 mmHg).

Perhaps it could be considered that patients in this study were less cooperative, or instructions to patients were inadequate when compared to those in the Norris study. It should also be remembered that this study was designed to mimic the real life situation in the operation theatre and this could also have adversely affected results.

However, in view of similar results obtained by the Russell and Cruise studies, earlier results may have been flawed.

Additional evidence to support this statement is the report by Gambee et al (9) who demonstrated earlier desaturation in ASA I nonpregnant patients who were preoxygenated with four rapid vital capacity breaths as compared to those who were preoxygenated with 3 minutes of tidal volume breathing.

In conclusion, parturients at term achieve significantly greater oxygen reserves with five minutes of tidal volume breathing as compared to 4, 6 and 8 rapid vital capacity breaths, while breathing through a circle absorber with a 2 litre reservoir bag with an oxygen flow of 8 litres min-1 (p < 0.01).

ACKNOWLEDGEMENTS

We wish to thank Dr Easaw Thomas, Consultant and Head of the Department of Anaesthesia, Kandang Kerbau Maternity Hospital for his encouragement and support for this study. We are also grateful to the doctors, Nursing Sisters and staff of Kandang Kerbau Maternity Hospital for their assistance and cooperation, without which the study would not be possible. Finally, last but not least, Mr LE Lee, Research Assistant, Division of Neonatology, National University of Singapore, for his invaluable technical assistance.
REFERENCES

2. Dillon JB, Darsie MI. Oxygenation for acute respiratory depression due to the administration of thiopental sodium. JAMA 1955; 159:1114-6.

